
- DSA - Home
- DSA - Overview
- DSA - Environment Setup
- DSA - Algorithms Basics
- DSA - Asymptotic Analysis
- Data Structures
- DSA - Data Structure Basics
- DSA - Data Structures and Types
- DSA - Array Data Structure
- DSA - Skip List Data Structure
- Linked Lists
- DSA - Linked List Data Structure
- DSA - Doubly Linked List Data Structure
- DSA - Circular Linked List Data Structure
- Stack & Queue
- DSA - Stack Data Structure
- DSA - Expression Parsing
- DSA - Queue Data Structure
- DSA - Circular Queue Data Structure
- DSA - Priority Queue Data Structure
- DSA - Deque Data Structure
- Searching Algorithms
- DSA - Searching Algorithms
- DSA - Linear Search Algorithm
- DSA - Binary Search Algorithm
- DSA - Interpolation Search
- DSA - Jump Search Algorithm
- DSA - Exponential Search
- DSA - Fibonacci Search
- DSA - Sublist Search
- DSA - Hash Table
- Sorting Algorithms
- DSA - Sorting Algorithms
- DSA - Bubble Sort Algorithm
- DSA - Insertion Sort Algorithm
- DSA - Selection Sort Algorithm
- DSA - Merge Sort Algorithm
- DSA - Shell Sort Algorithm
- DSA - Heap Sort Algorithm
- DSA - Bucket Sort Algorithm
- DSA - Counting Sort Algorithm
- DSA - Radix Sort Algorithm
- DSA - Quick Sort Algorithm
- Matrices Data Structure
- DSA - Matrices Data Structure
- DSA - Lup Decomposition In Matrices
- DSA - Lu Decomposition In Matrices
- Graph Data Structure
- DSA - Graph Data Structure
- DSA - Depth First Traversal
- DSA - Breadth First Traversal
- DSA - Spanning Tree
- DSA - Topological Sorting
- DSA - Strongly Connected Components
- DSA - Biconnected Components
- DSA - Augmenting Path
- DSA - Network Flow Problems
- DSA - Flow Networks In Data Structures
- DSA - Edmonds Blossom Algorithm
- DSA - Maxflow Mincut Theorem
- Tree Data Structure
- DSA - Tree Data Structure
- DSA - Tree Traversal
- DSA - Binary Search Tree
- DSA - AVL Tree
- DSA - Red Black Trees
- DSA - B Trees
- DSA - B+ Trees
- DSA - Splay Trees
- DSA - Range Queries
- DSA - Segment Trees
- DSA - Fenwick Tree
- DSA - Fusion Tree
- DSA - Hashed Array Tree
- DSA - K-Ary Tree
- DSA - Kd Trees
- DSA - Priority Search Tree Data Structure
- Recursion
- DSA - Recursion Algorithms
- DSA - Tower of Hanoi Using Recursion
- DSA - Fibonacci Series Using Recursion
- Divide and Conquer
- DSA - Divide and Conquer
- DSA - Max-Min Problem
- DSA - Strassen's Matrix Multiplication
- DSA - Karatsuba Algorithm
- Greedy Algorithms
- DSA - Greedy Algorithms
- DSA - Travelling Salesman Problem (Greedy Approach)
- DSA - Prim's Minimal Spanning Tree
- DSA - Kruskal's Minimal Spanning Tree
- DSA - Dijkstra's Shortest Path Algorithm
- DSA - Map Colouring Algorithm
- DSA - Fractional Knapsack Problem
- DSA - Job Sequencing with Deadline
- DSA - Optimal Merge Pattern Algorithm
- Dynamic Programming
- DSA - Dynamic Programming
- DSA - Matrix Chain Multiplication
- DSA - Floyd Warshall Algorithm
- DSA - 0-1 Knapsack Problem
- DSA - Longest Common Sub-sequence Algorithm
- DSA - Travelling Salesman Problem (Dynamic Approach)
- Hashing
- DSA - Hashing Data Structure
- DSA - Collision In Hashing
- Disjoint Set
- DSA - Disjoint Set
- DSA - Path Compression And Union By Rank
- Heap
- DSA - Heap Data Structure
- DSA - Binary Heap
- DSA - Binomial Heap
- DSA - Fibonacci Heap
- Tries Data Structure
- DSA - Tries
- DSA - Standard Tries
- DSA - Compressed Tries
- DSA - Suffix Tries
- Treaps
- DSA - Treaps Data Structure
- Bit Mask
- DSA - Bit Mask In Data Structures
- Bloom Filter
- DSA - Bloom Filter Data Structure
- Approximation Algorithms
- DSA - Approximation Algorithms
- DSA - Vertex Cover Algorithm
- DSA - Set Cover Problem
- DSA - Travelling Salesman Problem (Approximation Approach)
- Randomized Algorithms
- DSA - Randomized Algorithms
- DSA - Randomized Quick Sort Algorithm
- DSA - Karger’s Minimum Cut Algorithm
- DSA - Fisher-Yates Shuffle Algorithm
- Miscellaneous
- DSA - Infix to Postfix
- DSA - Bellmon Ford Shortest Path
- DSA - Maximum Bipartite Matching
- DSA Useful Resources
- DSA - Questions and Answers
- DSA - Selection Sort Interview Questions
- DSA - Merge Sort Interview Questions
- DSA - Insertion Sort Interview Questions
- DSA - Heap Sort Interview Questions
- DSA - Bubble Sort Interview Questions
- DSA - Bucket Sort Interview Questions
- DSA - Radix Sort Interview Questions
- DSA - Cycle Sort Interview Questions
- DSA - Quick Guide
- DSA - Useful Resources
- DSA - Discussion
Strassens Matrix Multiplication
Strassen's Matrix Multiplication is the divide and conquer approach to solve the matrix multiplication problems. The usual matrix multiplication method multiplies each row with each column to achieve the product matrix. The time complexity taken by this approach is O(n3), since it takes two loops to multiply. Strassens method was introduced to reduce the time complexity from O(n3) to O(nlog 7).
Naive Method
First, we will discuss Naive method and its complexity. Here, we are calculating Z=X Y. Using Naive method, two matrices (X and Y) can be multiplied if the order of these matrices are p q and q r and the resultant matrix will be of order p r. The following pseudocode describes the Naive multiplication −
Algorithm: Matrix-Multiplication (X, Y, Z) for i = 1 to p do for j = 1 to r do Z[i,j] := 0 for k = 1 to q do Z[i,j] := Z[i,j] + X[i,k] × Y[k,j]
Complexity
Here, we assume that integer operations take O(1) time. There are three for loops in this algorithm and one is nested in other. Hence, the algorithm takes O(n3) time to execute.
Strassens Matrix Multiplication Algorithm
In this context, using Strassens Matrix multiplication algorithm, the time consumption can be improved a little bit.
Strassens Matrix multiplication can be performed only on square matrices where n is a power of 2. Order of both of the matrices are n × n.
Divide X, Y and Z into four (n/2)×(n/2) matrices as represented below −
$Z = \begin{bmatrix}I & J \\K & L \end{bmatrix}$ $X = \begin{bmatrix}A & B \\C & D \end{bmatrix}$ and $Y = \begin{bmatrix}E & F \\G & H \end{bmatrix}$
Using Strassens Algorithm compute the following −
$$M_{1} \: \colon= (A+C) \times (E+F)$$
$$M_{2} \: \colon= (B+D) \times (G+H)$$
$$M_{3} \: \colon= (A-D) \times (E+H)$$
$$M_{4} \: \colon= A \times (F-H)$$
$$M_{5} \: \colon= (C+D) \times (E)$$
$$M_{6} \: \colon= (A+B) \times (H)$$
$$M_{7} \: \colon= D \times (G-E)$$
Then,
$$I \: \colon= M_{2} + M_{3} - M_{6} - M_{7}$$
$$J \: \colon= M_{4} + M_{6}$$
$$K \: \colon= M_{5} + M_{7}$$
$$L \: \colon= M_{1} - M_{3} - M_{4} - M_{5}$$
Analysis
$$T(n)=\begin{cases}c & if\:n= 1\\7\:x\:T(\frac{n}{2})+d\:x\:n^2 & otherwise\end{cases} \:where\: c\: and \:d\:are\: constants$$
Using this recurrence relation, we get $T(n) = O(n^{log7})$
Hence, the complexity of Strassens matrix multiplication algorithm is $O(n^{log7})$.
Example
Let us look at the implementation of Strassen's Matrix Multiplication in various programming languages: C, C++, Java, Python.
#include<stdio.h> int main(){ int z[2][2]; int i, j; int m1, m2, m3, m4 , m5, m6, m7; int x[2][2] = { {12, 34}, {22, 10} }; int y[2][2] = { {3, 4}, {2, 1} }; printf("The first matrix is: "); for(i = 0; i < 2; i++) { printf("\n"); for(j = 0; j < 2; j++) printf("%d\t", x[i][j]); } printf("\nThe second matrix is: "); for(i = 0; i < 2; i++) { printf("\n"); for(j = 0; j < 2; j++) printf("%d\t", y[i][j]); } m1= (x[0][0] + x[1][1]) * (y[0][0] + y[1][1]); m2= (x[1][0] + x[1][1]) * y[0][0]; m3= x[0][0] * (y[0][1] - y[1][1]); m4= x[1][1] * (y[1][0] - y[0][0]); m5= (x[0][0] + x[0][1]) * y[1][1]; m6= (x[1][0] - x[0][0]) * (y[0][0]+y[0][1]); m7= (x[0][1] - x[1][1]) * (y[1][0]+y[1][1]); z[0][0] = m1 + m4- m5 + m7; z[0][1] = m3 + m5; z[1][0] = m2 + m4; z[1][1] = m1 - m2 + m3 + m6; printf("\nProduct achieved using Strassen's algorithm: "); for(i = 0; i < 2 ; i++) { printf("\n"); for(j = 0; j < 2; j++) printf("%d\t", z[i][j]); } return 0; }
Output
The first matrix is: 12 34 22 10 The second matrix is: 3 4 2 1 Product achieved using Strassen's algorithm: 104 82 86 98
#include<iostream> using namespace std; int main() { int z[2][2]; int i, j; int m1, m2, m3, m4 , m5, m6, m7; int x[2][2] = { {12, 34}, {22, 10} }; int y[2][2] = { {3, 4}, {2, 1} }; cout<<"The first matrix is: "; for(i = 0; i < 2; i++) { cout<<endl; for(j = 0; j < 2; j++) cout<<x[i][j]<<" "; } cout<<"\nThe second matrix is: "; for(i = 0;i < 2; i++){ cout<<endl; for(j = 0;j < 2; j++) cout<<y[i][j]<<" "; } m1 = (x[0][0] + x[1][1]) * (y[0][0] + y[1][1]); m2 = (x[1][0] + x[1][1]) * y[0][0]; m3 = x[0][0] * (y[0][1] - y[1][1]); m4 = x[1][1] * (y[1][0] - y[0][0]); m5 = (x[0][0] + x[0][1]) * y[1][1]; m6 = (x[1][0] - x[0][0]) * (y[0][0]+y[0][1]); m7 = (x[0][1] - x[1][1]) * (y[1][0]+y[1][1]); z[0][0] = m1 + m4- m5 + m7; z[0][1] = m3 + m5; z[1][0] = m2 + m4; z[1][1] = m1 - m2 + m3 + m6; cout<<"\nProduct achieved using Strassen's algorithm: "; for(i = 0; i < 2 ; i++) { cout<<endl; for(j = 0; j < 2; j++) cout<<z[i][j]<<" "; } return 0; }
Output
The first matrix is: 12 34 22 10 The second matrix is: 3 4 2 1 Product achieved using Strassen's algorithm: 104 82 86 98
public class Strassens { public static void main(String[] args) { int[][] x = {{12, 34}, {22, 10}}; int[][] y = {{3, 4}, {2, 1}}; int z[][] = new int[2][2]; int m1, m2, m3, m4 , m5, m6, m7; System.out.print("The first matrix is: "); for(int i = 0; i<2; i++) { System.out.println();//new line for(int j = 0; j<2; j++) { System.out.print(x[i][j] + "\t"); } } System.out.print("\nThe second matrix is: "); for(int i = 0; i<2; i++) { System.out.println();//new line for(int j = 0; j<2; j++) { System.out.print(y[i][j] + "\t"); } } m1 = (x[0][0] + x[1][1]) * (y[0][0] + y[1][1]); m2 = (x[1][0] + x[1][1]) * y[0][0]; m3 = x[0][0] * (y[0][1] - y[1][1]); m4 = x[1][1] * (y[1][0] - y[0][0]); m5 = (x[0][0] + x[0][1]) * y[1][1]; m6 = (x[1][0] - x[0][0]) * (y[0][0]+y[0][1]); m7 = (x[0][1] - x[1][1]) * (y[1][0]+y[1][1]); z[0][0] = m1 + m4- m5 + m7; z[0][1] = m3 + m5; z[1][0] = m2 + m4; z[1][1] = m1 - m2 + m3 + m6; System.out.print("\nProduct achieved using Strassen's algorithm: "); for(int i = 0; i<2; i++) { System.out.println();//new line for(int j = 0; j<2; j++) { System.out.print(z[i][j] + "\t"); } } } }
Output
The first matrix is: 12 34 22 10 The second matrix is: 3 4 2 1 Product achieved using Strassen's algorithm: 104 82 86 98
import numpy as np x = np.array([[12, 34], [22, 10]]) y = np.array([[3, 4], [2, 1]]) z = np.zeros((2, 2)) m1, m2, m3, m4, m5, m6, m7 = 0, 0, 0, 0, 0, 0, 0 print("The first matrix is: ") for i in range(2): print() for j in range(2): print(x[i][j], end="\t") print("\nThe second matrix is: ") for i in range(2): print() for j in range(2): print(y[i][j], end="\t") m1 = (x[0][0] + x[1][1]) * (y[0][0] + y[1][1]) m2 = (x[1][0] + x[1][1]) * y[0][0] m3 = x[0][0] * (y[0][1] - y[1][1]) m4 = x[1][1] * (y[1][0] - y[0][0]) m5 = (x[0][0] + x[0][1]) * y[1][1] m6 = (x[1][0] - x[0][0]) * (y[0][0] + y[0][1]) m7 = (x[0][1] - x[1][1]) * (y[1][0] + y[1][1]) z[0][0] = m1 + m4 - m5 + m7 z[0][1] = m3 + m5 z[1][0] = m2 + m4 z[1][1] = m1 - m2 + m3 + m6 print("\nProduct achieved using Strassen's algorithm: ") for i in range(2): print() for j in range(2): print(z[i][j], end="\t")
Output
The first matrix is: 12 34 22 10 The second matrix is: 3 4 2 1 Product achieved using Strassen's algorithm: 104.0 82.0 86.0 98.0