-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathbinary_impl.ts
69 lines (56 loc) · 2.54 KB
/
binary_impl.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {backend_util, DataType, DataValues, NumericDataType, TypedArray, util} from '@tensorflow/tfjs-core';
import {SimpleBinaryKernelImpl, SimpleBinaryOperation} from './binary_types';
/**
* Template that creates implementation for binary ops. Supports broadcast.
*/
export function createSimpleBinaryKernelImpl(op: SimpleBinaryOperation):
SimpleBinaryKernelImpl {
return (aShape: number[], bShape: number[], aVals: DataValues,
bVals: DataValues, dtype: DataType): [TypedArray, number[]] => {
const newShape = backend_util.assertAndGetBroadcastShape(aShape, bShape);
const resultRank = newShape.length;
const resultStrides = util.computeStrides(newShape);
const resultSize = util.sizeFromShape(newShape);
const result =
util.getTypedArrayFromDType(dtype as NumericDataType, resultSize);
const aRank = aShape.length;
const bRank = bShape.length;
const aStrides = util.computeStrides(aShape);
const bStrides = util.computeStrides(bShape);
const aBroadcastDims = backend_util.getBroadcastDims(aShape, newShape);
const bBroadcastDims = backend_util.getBroadcastDims(bShape, newShape);
if (aBroadcastDims.length + bBroadcastDims.length === 0) {
for (let i = 0; i < result.length; ++i) {
result[i] = op(aVals[i % aVals.length], bVals[i % bVals.length]);
}
} else {
for (let i = 0; i < result.length; ++i) {
const loc = util.indexToLoc(i, resultRank, resultStrides);
const aLoc = loc.slice(-aRank);
aBroadcastDims.forEach(d => aLoc[d] = 0);
const aIndex = util.locToIndex(aLoc, aRank, aStrides);
const bLoc = loc.slice(-bRank);
bBroadcastDims.forEach(d => bLoc[d] = 0);
const bIndex = util.locToIndex(bLoc, bRank, bStrides);
result[i] = op(aVals[aIndex], bVals[bIndex]);
}
}
return [result, newShape];
};
}