forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_1377.java
90 lines (88 loc) · 3.8 KB
/
_1377.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
package com.fishercoder.solutions;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Queue;
/**
* 1377. Frog Position After T Seconds
*
* Given an undirected tree consisting of n vertices numbered from 1 to n.
* A frog starts jumping from the vertex 1.
* In one second, the frog jumps from its current vertex to another unvisited vertex if they are directly connected.
* The frog can not jump back to a visited vertex.
* In case the frog can jump to several vertices it jumps randomly to one of them with the same probability,
* otherwise, when the frog can not jump to any unvisited vertex it jumps forever on the same vertex.
* The edges of the undirected tree are given in the array edges, where edges[i] = [fromi, toi] means that exists an edge connecting directly the vertices fromi and toi.
* Return the probability that after t seconds the frog is on the vertex target.
*
* Example 1:
* Input: n = 7, edges = [[1,2],[1,3],[1,7],[2,4],[2,6],[3,5]], t = 2, target = 4
* Output: 0.16666666666666666
* Explanation: The figure above shows the given graph.
* The frog starts at vertex 1, jumping with 1/3 probability to the vertex 2 after second 1 and
* then jumping with 1/2 probability to vertex 4 after second 2.
* Thus the probability for the frog is on the vertex 4 after 2 seconds is 1/3 * 1/2 = 1/6 = 0.16666666666666666.
*
* Example 2:
* Input: n = 7, edges = [[1,2],[1,3],[1,7],[2,4],[2,6],[3,5]], t = 1, target = 7
* Output: 0.3333333333333333
* Explanation: The figure above shows the given graph. The frog starts at vertex 1, jumping with 1/3 = 0.3333333333333333 probability to the vertex 7 after second 1.
*
* Example 3:
* Input: n = 7, edges = [[1,2],[1,3],[1,7],[2,4],[2,6],[3,5]], t = 20, target = 6
* Output: 0.16666666666666666
*
* Constraints:
* 1 <= n <= 100
* edges.length == n-1
* edges[i].length == 2
* 1 <= edges[i][0], edges[i][1] <= n
* 1 <= t <= 50
* 1 <= target <= n
* Answers within 10^-5 of the actual value will be accepted as correct.
* */
public class _1377 {
public static class Solution1 {
/**credit: https://leetcode.com/problems/frog-position-after-t-seconds/discuss/532505/Java-Straightforward-BFS-Clean-code-O(N)*/
public double frogPosition(int n, int[][] edges, int t, int target) {
List<Integer>[] graph = new ArrayList[n];
for (int i = 0; i < n; i++) {
graph[i] = new ArrayList<>();
}
for (int[] edge : edges) {
graph[edge[0] - 1].add(edge[1] - 1);
graph[edge[1] - 1].add(edge[0] - 1);
}
boolean[] visited = new boolean[n];
visited[0] = true;
double[] probabilities = new double[n];
probabilities[0] = 1f;
Queue<Integer> queue = new LinkedList<>();
queue.offer(0);
while (!queue.isEmpty() && t-- > 0) {
for (int i = queue.size(); i > 0; i--) {
int vertex = queue.poll();
int nextVerticesCount = 0;
for (int next : graph[vertex]) {
if (!visited[next]) {
nextVerticesCount++;
}
}
for (int next : graph[vertex]) {
if (!visited[next]) {
visited[next] = true;
queue.offer(next);
probabilities[next] = probabilities[vertex] / nextVerticesCount;
}
}
if (nextVerticesCount > 0) {
probabilities[vertex] = 0;
}
}
}
return probabilities[target - 1];
}
}
}