|
| 1 | +package easy; |
| 2 | + |
| 3 | +import java.util.Arrays; |
| 4 | +import java.util.HashMap; |
| 5 | +import java.util.Map; |
| 6 | + |
| 7 | +import utils.CommonUtils; |
| 8 | + |
| 9 | +/**169. Majority Element QuestionEditorial Solution My Submissions |
| 10 | +Total Accepted: 132691 |
| 11 | +Total Submissions: 309653 |
| 12 | +Difficulty: Easy |
| 13 | +Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋ times. |
| 14 | +
|
| 15 | +You may assume that the array is non-empty and the majority element always exist in the array. |
| 16 | +
|
| 17 | +*/ |
| 18 | +public class MajorityElement { |
| 19 | + |
| 20 | + public int majorityElement_bit_manipulation(int[] nums){ |
| 21 | + int[] bit = new int[32];//because an integer is 32 bits, so we use an array of 32 long |
| 22 | + for(int num : nums){ |
| 23 | + for(int i = 0; i < 32; i++){ |
| 24 | + if((num >> (31-i) & 1) == 1) bit[i]++;//this is to compute each number's ones frequency |
| 25 | + } |
| 26 | + } |
| 27 | + int res = 0; |
| 28 | + //this below for loop is to construct the majority element: since every bit of this element would have appeared more than n/2 times |
| 29 | + for(int i = 0; i < 32; i++){ |
| 30 | + bit[i] = bit[i] > nums.length/2 ? 1 : 0;//we get rid of those that bits that are not part of the majority number |
| 31 | + res += bit[i]*(1 << (31-i)); |
| 32 | + } |
| 33 | + return res; |
| 34 | + } |
| 35 | + |
| 36 | + //saw a really clever solution on Discuss, though it didn't use bit manipulatoin |
| 37 | + //this is actually applying a famous algorithm called Moore Voting algorithm: http://www.cs.utexas.edu/~moore/best-ideas/mjrty/example.html |
| 38 | + public int majorityElement_moore_voting_algorithm(int[] nums){ |
| 39 | + int count = 1, majority = nums[0]; |
| 40 | + for(int i = 1; i < nums.length; i++){ |
| 41 | + if(count == 0){ |
| 42 | + count++; |
| 43 | + majority = nums[i]; |
| 44 | + } else if(nums[i] == majority){ |
| 45 | + count++; |
| 46 | + } else count--; |
| 47 | + } |
| 48 | + return majority; |
| 49 | + } |
| 50 | + |
| 51 | + public static void main(String...strings){ |
| 52 | + int[] nums = new int[]{1,2,3,4,2,3,2,2,4,2}; |
| 53 | + MajorityElement test = new MajorityElement(); |
| 54 | + System.out.println(test.majorityElement_bit_manipulation(nums)); |
| 55 | + } |
| 56 | + |
| 57 | + //my natural idea is to either compute the frequency of each unique number or sort it and return the median, I can hardly think of |
| 58 | + //how bit manipulation could come into play for this question |
| 59 | + //this is O(n) time. |
| 60 | + public int majorityElement_compute_frequency(int[] nums) { |
| 61 | + Map<Integer, Integer> map = new HashMap(); |
| 62 | + for(int i : nums){ |
| 63 | + map.put(i, map.getOrDefault(i, 0) + 1); |
| 64 | + if(map.get(i) > nums.length/2) return i; |
| 65 | + } |
| 66 | + return -1; |
| 67 | + } |
| 68 | + |
| 69 | + //This is O(nlogn) time. |
| 70 | + public int majorityElement_sort(int[] nums) { |
| 71 | + Arrays.sort(nums); |
| 72 | + return nums[nums.length/2]; |
| 73 | + } |
| 74 | +} |
0 commit comments