-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathannrpython.py
693 lines (599 loc) · 27.5 KB
/
annrpython.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
from __future__ import absolute_import
import types
from collections import defaultdict
from contextlib import contextmanager
from rpython.tool.ansi_print import AnsiLogger
from rpython.tool.pairtype import pair
from rpython.tool.error import (format_blocked_annotation_error,
gather_error, source_lines)
from rpython.flowspace.model import Variable, Constant, checkgraph
from rpython.translator import simplify, transform
from rpython.annotator import model as annmodel, signature
from rpython.annotator.model import (
typeof, s_ImpossibleValue, SomeInstance, intersection, difference)
from rpython.annotator.bookkeeper import Bookkeeper
from rpython.rtyper.normalizecalls import perform_normalizations
log = AnsiLogger("annrpython")
class RPythonAnnotator(object):
"""Block annotator for RPython.
See description in doc/translation.txt."""
def __init__(self, translator=None, policy=None, bookkeeper=None,
keepgoing=False):
import rpython.rtyper.extfuncregistry # has side effects
if translator is None:
# interface for tests
from rpython.translator.translator import TranslationContext
translator = TranslationContext()
translator.annotator = self
self.translator = translator
self.genpendingblocks=[{}] # [{block: graph-containing-it}] * generation
self.annotated = {} # set of blocks already seen
self.added_blocks = None # see processblock() below
self.links_followed = {} # set of links that have ever been followed
self.notify = {} # {block: {positions-to-reflow-from-when-done}}
self.fixed_graphs = {} # set of graphs not to annotate again
self.blocked_blocks = {} # set of {blocked_block: (graph, index)}
# --- the following information is recorded for debugging ---
self.blocked_graphs = {} # set of graphs that have blocked blocks
# --- end of debugging information ---
self.frozen = False
if policy is None:
from rpython.annotator.policy import AnnotatorPolicy
self.policy = AnnotatorPolicy()
else:
self.policy = policy
if bookkeeper is None:
bookkeeper = Bookkeeper(self)
self.bookkeeper = bookkeeper
self.keepgoing = keepgoing
self.failed_blocks = set()
self.errors = []
def __getstate__(self):
attrs = """translator genpendingblocks annotated links_followed
notify bookkeeper frozen policy added_blocks""".split()
ret = self.__dict__.copy()
for key, value in ret.items():
if key not in attrs:
assert type(value) is dict, (
"%r is not dict. please update %s.__getstate__" %
(key, self.__class__.__name__))
ret[key] = {}
return ret
#___ convenience high-level interface __________________
def build_types(self, function, input_arg_types, complete_now=True,
main_entry_point=False):
"""Recursively build annotations about the specific entry point."""
assert isinstance(function, types.FunctionType), "fix that!"
from rpython.annotator.policy import AnnotatorPolicy
policy = AnnotatorPolicy()
# make input arguments and set their type
args_s = [self.typeannotation(t) for t in input_arg_types]
# XXX hack
annmodel.TLS.check_str_without_nul = (
self.translator.config.translation.check_str_without_nul)
with self.using_policy(policy):
flowgraph, inputs_s = self.get_call_parameters(function, args_s)
if main_entry_point:
self.translator.entry_point_graph = flowgraph
return self.build_graph_types(flowgraph, inputs_s, complete_now=complete_now)
def get_call_parameters(self, function, args_s):
with self.bookkeeper.at_position(None):
desc = self.bookkeeper.getdesc(function)
return desc.get_call_parameters(args_s)
def annotate_helper(self, function, args_s, policy=None):
if policy is None:
from rpython.annotator.policy import AnnotatorPolicy
policy = AnnotatorPolicy()
# XXX hack
annmodel.TLS.check_str_without_nul = (
self.translator.config.translation.check_str_without_nul)
with self.using_policy(policy):
graph, inputcells = self.get_call_parameters(function, args_s)
self.build_graph_types(graph, inputcells, complete_now=False)
self.complete_helpers()
return graph
def complete_helpers(self):
saved = self.added_blocks
self.added_blocks = {}
try:
self.complete()
# invoke annotation simplifications for the new blocks
self.simplify(block_subset=self.added_blocks)
finally:
self.added_blocks = saved
@contextmanager
def using_policy(self, policy):
"""A context manager that temporarily replaces the annotator policy"""
old_policy = self.policy
self.policy = policy
yield
self.policy = old_policy
def build_graph_types(self, flowgraph, inputcells, complete_now=True):
checkgraph(flowgraph)
nbarg = len(flowgraph.getargs())
assert len(inputcells) == nbarg # wrong number of args
# register the entry point
self.addpendinggraph(flowgraph, inputcells)
# recursively proceed until no more pending block is left
if complete_now:
self.complete()
return self.annotation(flowgraph.getreturnvar())
def gettype(self, variable):
"""Return the known type of a control flow graph variable,
defaulting to 'object'."""
if isinstance(variable, Constant):
return type(variable.value)
elif isinstance(variable, Variable):
s_variable = variable.annotation
if s_variable:
return s_variable.knowntype
else:
return object
else:
raise TypeError("Variable or Constant instance expected, "
"got %r" % (variable,))
def getuserclassdefinitions(self):
"""Return a list of ClassDefs."""
return self.bookkeeper.classdefs
#___ medium-level interface ____________________________
def addpendinggraph(self, flowgraph, inputcells):
self.addpendingblock(flowgraph, flowgraph.startblock, inputcells)
def addpendingblock(self, graph, block, cells):
"""Register an entry point into block with the given input cells."""
if graph in self.fixed_graphs:
# special case for annotating/rtyping in several phases: calling
# a graph that has already been rtyped. Safety-check the new
# annotations that are passed in, and don't annotate the old
# graph -- it's already low-level operations!
for a, s_newarg in zip(block.inputargs, cells):
s_oldarg = a.annotation
# XXX: Should use s_oldarg.contains(s_newarg) but that breaks
# PyPy translation
if annmodel.unionof(s_oldarg, s_newarg) != s_oldarg:
raise annmodel.AnnotatorError(
"Late-stage annotation is not allowed to modify the "
"existing annotation for variable %s: %s" %
(a, s_oldarg))
else:
assert not self.frozen
if block not in self.annotated:
self.bindinputargs(graph, block, cells)
else:
self.mergeinputargs(graph, block, cells)
if not self.annotated[block]:
self.schedulependingblock(graph, block)
def schedulependingblock(self, graph, block):
# 'self.genpendingblocks' is a list of dictionaries which is
# logically equivalent to just one dictionary. But we keep a
# 'generation' number on each block (=key), and whenever we
# process a block, we increase its generation number. The
# block is added to the 'genpendingblocks' indexed by its
# generation number. See complete_pending_blocks() below.
generation = getattr(block, 'generation', 0)
self.genpendingblocks[generation][block] = graph
def complete_pending_blocks(self):
while True:
# Find the first of the dictionaries in 'self.genpendingblocks'
# which is not empty
gen = 0
for pendingblocks in self.genpendingblocks:
if pendingblocks:
break
gen += 1
else:
return # all empty => done
gen += 1 # next generation number
if len(self.genpendingblocks) == gen:
self.genpendingblocks.append({})
# Process all blocks at this level
# (if any gets re-inserted, it will be into the next level)
while pendingblocks:
block, graph = pendingblocks.popitem()
block.generation = gen
self.processblock(graph, block)
def complete(self):
"""Process pending blocks until none is left."""
while True:
self.complete_pending_blocks()
self.policy.no_more_blocks_to_annotate(self)
if not any(self.genpendingblocks):
break # finished
# make sure that the return variables of all graphs is annotated
if self.added_blocks is not None:
newgraphs = [self.annotated[block] for block in self.added_blocks]
newgraphs = dict.fromkeys(newgraphs)
got_blocked_blocks = False in newgraphs
else:
newgraphs = self.translator.graphs #all of them
got_blocked_blocks = False in self.annotated.values()
if self.failed_blocks:
text = ('Annotation failed, %s errors were recorded:' %
len(self.errors))
text += '\n-----'.join(str(e) for e in self.errors)
raise annmodel.AnnotatorError(text)
if got_blocked_blocks:
for graph in self.blocked_graphs.values():
self.blocked_graphs[graph] = True
blocked_blocks = [block for block, done in self.annotated.items()
if done is False]
assert len(blocked_blocks) == len(self.blocked_blocks)
text = format_blocked_annotation_error(self, self.blocked_blocks)
#raise SystemExit()
raise annmodel.AnnotatorError(text)
for graph in newgraphs:
v = graph.getreturnvar()
if v.annotation is None:
self.setbinding(v, s_ImpossibleValue)
v = graph.exceptblock.inputargs[1]
if v.annotation is not None and v.annotation.can_be_none():
raise annmodel.AnnotatorError(
"%r is found by annotation to possibly raise None, "
"but the None was not suppressed by the flow space" %
(graph,))
def validate(self):
"""Check that the annotation results are valid"""
self.bookkeeper.check_no_flags_on_instances()
def annotation(self, arg):
"Gives the SomeValue corresponding to the given Variable or Constant."
if isinstance(arg, Variable):
return arg.annotation
elif isinstance(arg, Constant):
return self.bookkeeper.immutablevalue(arg.value)
else:
raise TypeError('Variable or Constant expected, got %r' % (arg,))
def binding(self, arg):
"Gives the SomeValue corresponding to the given Variable or Constant."
s_arg = self.annotation(arg)
if s_arg is None:
raise KeyError
return s_arg
def typeannotation(self, t):
return signature.annotation(t, self.bookkeeper)
def setbinding(self, arg, s_value):
s_old = arg.annotation
if s_old is not None:
if not s_value.contains(s_old):
log.WARNING("%s does not contain %s" % (s_value, s_old))
log.WARNING("%s" % annmodel.union(s_value, s_old))
assert False
arg.annotation = s_value
def warning(self, msg, pos=None):
if pos is None:
try:
pos = self.bookkeeper.position_key
except AttributeError:
pos = '?'
if pos != '?':
pos = self.whereami(pos)
log.WARNING("%s/ %s" % (pos, msg))
#___ interface for annotator.bookkeeper _______
def recursivecall(self, graph, whence, inputcells):
if whence is not None:
parent_graph, parent_block, parent_index = whence
tag = parent_block, parent_index
self.translator.update_call_graph(parent_graph, graph, tag)
# self.notify[graph.returnblock] is a set of call
# points to this func which triggers a reflow whenever the
# return block of this graph has been analysed.
returnpositions = self.notify.setdefault(graph.returnblock, set())
returnpositions.add(whence)
# generalize the function's input arguments
self.addpendingblock(graph, graph.startblock, inputcells)
# get the (current) return value
v = graph.getreturnvar()
try:
return self.binding(v)
except KeyError:
# the function didn't reach any return statement so far.
# (some functions actually never do, they always raise exceptions)
return s_ImpossibleValue
def reflowfromposition(self, position_key):
graph, block, index = position_key
self.reflowpendingblock(graph, block)
def call_sites(self):
newblocks = self.added_blocks
if newblocks is None:
newblocks = self.annotated # all of them
for block in newblocks:
for op in block.operations:
if op.opname in ('simple_call', 'call_args'):
yield op
# some blocks are partially annotated
if op.result.annotation is None:
break # ignore the unannotated part
#___ simplification (should be moved elsewhere?) _______
def simplify(self, block_subset=None, extra_passes=None):
# Generic simplifications
transform.transform_graph(self, block_subset=block_subset,
extra_passes=extra_passes)
if block_subset is None:
graphs = self.translator.graphs
else:
graphs = {}
for block in block_subset:
graph = self.annotated.get(block)
if graph:
graphs[graph] = True
for graph in graphs:
simplify.eliminate_empty_blocks(graph)
self.bookkeeper.compute_at_fixpoint()
if block_subset is None:
perform_normalizations(self)
#___ flowing annotations in blocks _____________________
def processblock(self, graph, block):
# Important: this is not called recursively.
# self.flowin() can only issue calls to self.addpendingblock().
# The analysis of a block can be in three states:
# * block not in self.annotated:
# never seen the block.
# * self.annotated[block] == False:
# the input variables of the block have bindings but we
# still have to consider all the operations in the block.
# * self.annotated[block] == graph-containing-block:
# analysis done (at least until we find we must generalize the
# input variables).
#print '* processblock', block, cells
self.annotated[block] = graph
if block in self.failed_blocks:
return
if block in self.blocked_blocks:
del self.blocked_blocks[block]
try:
self.flowin(graph, block)
except BlockedInference as e:
self.annotated[block] = False # failed, hopefully temporarily
self.blocked_blocks[block] = (graph, e.opindex)
except Exception as e:
# hack for debug tools only
if not hasattr(e, '__annotator_block'):
setattr(e, '__annotator_block', block)
raise
# The dict 'added_blocks' is used by rpython.annlowlevel to
# detect which are the new blocks that annotating an additional
# small helper creates.
if self.added_blocks is not None:
self.added_blocks[block] = True
def reflowpendingblock(self, graph, block):
assert not self.frozen
assert graph not in self.fixed_graphs
self.schedulependingblock(graph, block)
assert block in self.annotated
self.annotated[block] = False # must re-flow
self.blocked_blocks[block] = (graph, None)
def bindinputargs(self, graph, block, inputcells):
# Create the initial bindings for the input args of a block.
assert len(block.inputargs) == len(inputcells)
for a, cell in zip(block.inputargs, inputcells):
self.setbinding(a, cell)
self.annotated[block] = False # must flowin.
self.blocked_blocks[block] = (graph, None)
def mergeinputargs(self, graph, block, inputcells):
# Merge the new 'cells' with each of the block's existing input
# variables.
oldcells = [self.binding(a) for a in block.inputargs]
try:
unions = [annmodel.unionof(c1,c2) for c1, c2 in zip(oldcells,inputcells)]
except annmodel.UnionError as e:
# Add source code to the UnionError
e.source = '\n'.join(source_lines(graph, block, None, long=True))
if self.keepgoing:
self.errors.append(e)
self.failed_blocks.add(block)
return
raise
# if the merged cells changed, we must redo the analysis
if unions != oldcells:
self.bindinputargs(graph, block, unions)
def apply_renaming(self, s_out, renaming):
if hasattr(s_out, 'is_type_of'):
renamed_is_type_of = []
for v in s_out.is_type_of:
renamed_is_type_of += renaming[v]
assert s_out.knowntype is type
newcell = typeof(renamed_is_type_of)
if s_out.is_constant():
newcell.const = s_out.const
s_out = newcell
if hasattr(s_out, 'knowntypedata'):
renamed_knowntypedata = {}
for value, constraints in s_out.knowntypedata.items():
renamed_knowntypedata[value] = {}
for v, s in constraints.items():
new_vs = renaming.get(v, [])
for new_v in new_vs:
renamed_knowntypedata[value][new_v] = s
assert isinstance(s_out, annmodel.SomeBool)
newcell = annmodel.SomeBool()
if s_out.is_constant():
newcell.const = s_out.const
s_out = newcell
s_out.set_knowntypedata(renamed_knowntypedata)
return s_out
def whereami(self, position_key):
graph, block, i = position_key
blk = ""
if block:
at = block.at()
if at:
blk = " block"+at
opid=""
if i is not None:
opid = " op=%d" % i
return repr(graph) + blk + opid
def flowin(self, graph, block):
try:
i = 0
while i < len(block.operations):
op = block.operations[i]
with self.bookkeeper.at_position((graph, block, i)):
new_ops = op.transform(self)
if new_ops is not None:
block.operations[i:i+1] = new_ops
if not new_ops:
continue
new_ops[-1].result = op.result
op = new_ops[0]
self.consider_op(op)
i += 1
except BlockedInference as e:
if e.op is block.raising_op:
# this is the case where the last operation of the block will
# always raise an exception which is immediately caught by
# an exception handler. We then only follow the exceptional
# branches.
exits = [link for link in block.exits
if link.exitcase is not None]
elif e.op.opname in ('simple_call', 'call_args', 'next'):
# XXX warning, keep the name of the call operations in sync
# with the flow object space. These are the operations for
# which it is fine to always raise an exception. We then
# swallow the BlockedInference and that's it.
# About 'next': see test_annotate_iter_empty_container().
return
else:
# other cases are problematic (but will hopefully be solved
# later by reflowing). Throw the BlockedInference up to
# processblock().
e.opindex = i
raise
except annmodel.HarmlesslyBlocked:
return
except annmodel.AnnotatorError as e: # note that UnionError is a subclass
e.source = gather_error(self, graph, block, i)
if self.keepgoing:
self.errors.append(e)
self.failed_blocks.add(block)
return
raise
else:
# dead code removal: don't follow all exits if the exitswitch
# is known
exits = block.exits
if isinstance(block.exitswitch, Variable):
s_exitswitch = self.binding(block.exitswitch)
if s_exitswitch.is_constant():
exits = [link for link in exits
if link.exitcase == s_exitswitch.const]
if block.canraise:
op = block.raising_op
s_exception = self.get_exception(op)
for link in exits:
case = link.exitcase
if case is None:
self.follow_link(graph, link, {})
continue
if s_exception == s_ImpossibleValue:
break
s_case = SomeInstance(self.bookkeeper.getuniqueclassdef(case))
s_matching_exc = intersection(s_exception, s_case)
if s_matching_exc != s_ImpossibleValue:
self.follow_raise_link(graph, link, s_matching_exc)
s_exception = difference(s_exception, s_case)
else:
if isinstance(block.exitswitch, Variable):
knowntypedata = getattr(
block.exitswitch.annotation, "knowntypedata", {})
else:
knowntypedata = {}
for link in exits:
constraints = knowntypedata.get(link.exitcase, {})
self.follow_link(graph, link, constraints)
if block in self.notify:
for position in self.notify[block]:
self.reflowfromposition(position)
def follow_link(self, graph, link, constraints):
assert not (isinstance(link.exitcase, (types.ClassType, type)) and
issubclass(link.exitcase, BaseException))
ignore_link = False
inputs_s = []
renaming = defaultdict(list)
for v_out, v_input in zip(link.args, link.target.inputargs):
renaming[v_out].append(v_input)
for v_out in link.args:
s_out = self.annotation(v_out)
if v_out in constraints:
s_constraint = constraints[v_out]
s_out = pair(s_out, s_constraint).improve()
# ignore links that try to pass impossible values
if s_out == s_ImpossibleValue:
ignore_link = True
s_out = self.apply_renaming(s_out, renaming)
inputs_s.append(s_out)
if ignore_link:
return
self.links_followed[link] = True
self.addpendingblock(graph, link.target, inputs_s)
def follow_raise_link(self, graph, link, s_last_exc_value):
v_last_exc_type = link.last_exception
v_last_exc_value = link.last_exc_value
assert (isinstance(link.exitcase, (types.ClassType, type)) and
issubclass(link.exitcase, BaseException))
assert v_last_exc_type and v_last_exc_value
if isinstance(v_last_exc_value, Variable):
self.setbinding(v_last_exc_value, s_last_exc_value)
if isinstance(v_last_exc_type, Variable):
self.setbinding(v_last_exc_type, typeof([v_last_exc_value]))
inputs_s = []
renaming = defaultdict(list)
for v_out, v_input in zip(link.args, link.target.inputargs):
renaming[v_out].append(v_input)
for v_out, v_input in zip(link.args, link.target.inputargs):
if v_out == v_last_exc_type:
s_out = typeof(renaming[v_last_exc_value])
if isinstance(v_last_exc_type, Constant):
s_out.const = v_last_exc_type.value
elif v_last_exc_type.annotation.is_constant():
s_out.const = v_last_exc_type.annotation.const
inputs_s.append(s_out)
else:
s_out = self.annotation(v_out)
s_out = self.apply_renaming(s_out, renaming)
inputs_s.append(s_out)
self.links_followed[link] = True
self.addpendingblock(graph, link.target, inputs_s)
#___ creating the annotations based on operations ______
def consider_op(self, op):
# let's be careful about avoiding propagated SomeImpossibleValues
# to enter an op; the latter can result in violations of the
# more general results invariant: e.g. if SomeImpossibleValue enters is_
# is_(SomeImpossibleValue, None) -> SomeBool
# is_(SomeInstance(not None), None) -> SomeBool(const=False) ...
# boom -- in the assert of setbinding()
for arg in op.args:
if isinstance(self.annotation(arg), annmodel.SomeImpossibleValue):
raise BlockedInference(self, op, -1)
resultcell = op.consider(self)
if resultcell is None:
resultcell = s_ImpossibleValue
elif resultcell == s_ImpossibleValue:
raise BlockedInference(self, op, -1) # the operation cannot succeed
assert isinstance(resultcell, annmodel.SomeObject)
assert isinstance(op.result, Variable)
self.setbinding(op.result, resultcell) # bind resultcell to op.result
def get_exception(self, operation):
"""
Return the annotation for all exceptions that `operation` may raise.
"""
can_only_throw = operation.get_can_only_throw(self)
if can_only_throw is None:
return SomeInstance(self.bookkeeper.getuniqueclassdef(Exception))
else:
return self.bookkeeper.new_exception(can_only_throw)
class BlockedInference(Exception):
"""This exception signals the type inference engine that the situation
is currently blocked, and that it should try to progress elsewhere."""
def __init__(self, annotator, op, opindex):
self.annotator = annotator
try:
self.break_at = annotator.bookkeeper.position_key
except AttributeError:
self.break_at = None
self.op = op
self.opindex = opindex
def __repr__(self):
if not self.break_at:
break_at = "?"
else:
break_at = self.annotator.whereami(self.break_at)
return "<BlockedInference break_at %s [%s]>" %(break_at, self.op)
__str__ = __repr__