-
Notifications
You must be signed in to change notification settings - Fork 121
/
Copy pathbinarySearchTree.go
318 lines (286 loc) · 7.25 KB
/
binarySearchTree.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
package binaryTree
type bstElement struct {
binaryTreeElement
parent, left, right *bstElement
}
type bst struct {
root *bstElement
}
func (t *bst) IsNil(n interface{}) bool {
return n == nil
}
func (t *bst) Root() interface{} {
return t.root
}
func (t *bst) Search(key uint32) interface{} {
for cur := t.root; cur != nil; {
if cur.Key == key {
return cur
} else if key < cur.Key {
cur = cur.left
} else {
cur = cur.right
}
}
return nil
}
func (t *bst) Insert(node interface{}) interface{} {
var target *bstElement
n, isNode := node.(*bstElement)
if !isNode {
n = new(bstElement)
n.Key = node.(uint32)
}
for cur := t.root; cur != nil; {
target = cur
if n.Key < cur.Key {
cur = cur.left
} else {
cur = cur.right
}
}
n.parent = target
if target == nil {
t.root = n
} else if n.Key < target.Key {
target.left = n
} else {
target.right = n
}
return n
}
func (t *bst) Delete(key uint32) interface{} {
deleteNonCompletedNode := func(node *bstElement) {
var reConnectedNode *bstElement
if node.left == nil {
reConnectedNode = node.right
} else {
reConnectedNode = node.left
}
if reConnectedNode != nil {
reConnectedNode.parent = node.parent
}
if node.parent == nil {
t.root = reConnectedNode
} else if node.parent.right == node {
node.parent.right = reConnectedNode
} else {
node.parent.left = reConnectedNode
}
node = nil
}
node := t.Search(key).(*bstElement)
if node == nil {
return node
}
if node.left == nil || node.right == nil {
deleteNonCompletedNode(node)
} else {
successor := t.Successor(node, t.Root()).(*bstElement)
_key, _value := successor.Key, successor.Value
deleteNonCompletedNode(successor)
node.Key, node.Value = _key, _value
}
return node
}
func (t *bst) Min(node interface{}) interface{} {
cur := node.(*bstElement)
for cur.left != nil {
cur = cur.left
}
return cur
}
func (t *bst) Max(node interface{}) interface{} {
cur := node.(*bstElement)
for cur.right != nil {
cur = cur.right
}
return cur
}
func (t *bst) Predecessor(node interface{}, root interface{}) interface{} {
n := node.(*bstElement)
if n == nil {
return nil
}
if n.left != nil {
return t.Max(n.left)
}
cur := n
for cur.parent != nil && cur.parent.right != cur {
cur = cur.parent
}
return cur.parent
}
func (t *bst) Successor(node interface{}, root interface{}) interface{} {
n := node.(*bstElement)
if n == nil {
return nil
}
if n.right != nil {
return t.Min(n.right)
}
cur := n
for cur.parent != nil && cur.parent.left != cur {
cur = cur.parent
}
return cur.parent
}
func (t *bst) LeftRotate(node interface{}) interface{} {
panic("not implement in bst!")
}
func (t *bst) RightRotate(node interface{}) interface{} {
panic("not implement in bst!")
}
type bstRecrusive struct {
bst
}
func (t *bstRecrusive) InOrderWalk(node interface{}, callback func(binaryTreeIf, interface{}) bool) bool {
n := node.(*bstElement)
if n != nil {
stop := t.InOrderWalk(n.left, callback)
if stop {
return true
}
stop = callback(t, n)
if stop {
return true
}
stop = t.InOrderWalk(n.right, callback)
return stop
}
return false
}
func (t *bstRecrusive) PreOrderWalk(node interface{}, callback func(binaryTreeIf, interface{}) bool) bool {
n := node.(*bstElement)
if n != nil {
stop := callback(t, n)
if stop {
return true
}
stop = t.PreOrderWalk(n.left, callback)
if stop {
return true
}
stop = t.PreOrderWalk(n.right, callback)
return stop
}
return false
}
func (t *bstRecrusive) PostOrderWalk(node interface{}, callback func(binaryTreeIf, interface{}) bool) bool {
n := node.(*bstElement)
if n != nil {
stop := t.PostOrderWalk(n.left, callback)
if stop {
return true
}
stop = t.PostOrderWalk(n.right, callback)
if stop {
return true
}
stop = callback(t, n)
return stop
}
return false
}
func newBstRecrusive() *bstRecrusive {
return new(bstRecrusive)
}
type bstIterative struct {
bst
}
//next node should always be successor node
//O(n), all the connections(n-1) are accessed less than or equal to 2 times
func (t *bstIterative) InOrderWalk(node interface{}, callback func(binaryTreeIf, interface{}) bool) bool {
n := node.(*bstElement)
for curNode := t.Min(n).(*bstElement); curNode != nil; {
stop := callback(t, curNode)
if stop {
return true
}
curNode = t.Successor(curNode, n).(*bstElement)
}
return false
}
//GoDown: if the node has left child, go through left, otherwise if the node has right child, go through right. After it gets leaf node, go up
//GoUp : left node: find a completed node or a right node like this:
// 3
// \
// cur(5)
// /
// 4
// right node: remove itself from parent, then find the successor of parent, then recover parent
//During going up, when it gets root or a node has right child , go down
//O(n), all the connections(n-1) are accessed less than or equal to 2 times
func (t *bstIterative) PreOrderWalk(node interface{}, callback func(binaryTreeIf, interface{}) bool) bool {
root := node.(*bstElement)
goDown := func(curNode *bstElement) (*bstElement, bool) {
if curNode.left != nil {
return curNode.left, true
} else if curNode.right != nil {
return curNode.right, true
}
return curNode, false
}
goUp := func(curNode *bstElement) (*bstElement, bool) {
if curNode == root || curNode.right != nil {
return curNode.right, true
} else if curNode == curNode.parent.left {
for curNode == curNode.parent.left {
curNode = curNode.parent
if curNode == root || curNode.right != nil {
return curNode.right, true
}
}
} else {
parentNode := curNode.parent
parentRightNode := parentNode.right
parentNode.right = nil
curNode = t.Successor(parentNode, root).(*bstElement)
parentNode.right = parentRightNode
}
return curNode, false
}
down := true
for curNode := root; curNode != nil; {
if down {
stop := callback(t, curNode)
if stop {
return true
}
curNode, down = goDown(curNode)
} else {
curNode, down = goUp(curNode)
}
}
return false
}
//start from the leftist node, which must be the min node or leftist leaf node of right sub tree of min node
//if the node is left leaf node, find the leftist node of right sub tree of parent
//if the node is right leaf node, go bach to parent
//O(n), all the connections(n-1) are accessed less than or equal to 2 times
func (t *bstIterative) PostOrderWalk(node interface{}, callback func(binaryTreeIf, interface{}) bool) bool {
n := node.(*bstElement)
leftistNode := func(curNode *bstElement) (nextNode *bstElement) {
nextNode = curNode
for nextNode.right != nil {
nextNode = t.Min(nextNode.right).(*bstElement)
}
return
}
for curNode := leftistNode(t.Min(n).(*bstElement)); curNode != n; {
stop := callback(t, curNode)
if stop {
return true
}
parentNode := curNode.parent
if curNode == parentNode.left {
curNode = leftistNode(parentNode)
} else {
curNode = parentNode
}
}
return callback(t, n)
}
func newBstIterative() *bstIterative {
return new(bstIterative)
}