@@ -479,7 +479,7 @@ <h1>Source code for torch.functional</h1><div class="highlight"><pre>
479
479
< span class ="k "> return</ span > < span class ="n "> _VF</ span > < span class ="o "> .</ span > < span class ="n "> broadcast_tensors</ span > < span class ="p "> (</ span > < span class ="n "> tensors</ span > < span class ="p "> )</ span > < span class ="c1 "> # type: ignore[attr-defined]</ span > </ div >
480
480
481
481
482
- < div class =" viewcode-block " id =" broadcast_shapes " > < a class =" viewcode-back " href =" ../../generated/torch.broadcast_shapes.html#torch.broadcast_shapes " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> broadcast_shapes</ span > < span class ="p "> (</ span > < span class ="o "> *</ span > < span class ="n "> shapes</ span > < span class ="p "> ):</ span >
482
+ < span class ="k "> def</ span > < span class ="nf "> broadcast_shapes</ span > < span class ="p "> (</ span > < span class ="o "> *</ span > < span class ="n "> shapes</ span > < span class ="p "> ):</ span >
483
483
< span class ="sa "> r</ span > < span class ="sd "> """broadcast_shapes(*shapes) -> Size</ span >
484
484
485
485
< span class ="sd "> Similar to :func:`broadcast_tensors` but for shapes.</ span >
@@ -539,7 +539,7 @@ <h1>Source code for torch.functional</h1><div class="highlight"><pre>
539
539
< span class ="n "> scalar</ span > < span class ="o "> =</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> zeros</ span > < span class ="p "> ((),</ span > < span class ="n "> device</ span > < span class ="o "> =</ span > < span class ="s2 "> "cpu"</ span > < span class ="p "> )</ span >
540
540
< span class ="n "> tensors</ span > < span class ="o "> =</ span > < span class ="p "> [</ span > < span class ="n "> scalar</ span > < span class ="o "> .</ span > < span class ="n "> expand</ span > < span class ="p "> (</ span > < span class ="n "> shape</ span > < span class ="p "> )</ span > < span class ="k "> for</ span > < span class ="n "> shape</ span > < span class ="ow "> in</ span > < span class ="n "> shapes</ span > < span class ="p "> ]</ span >
541
541
< span class ="n "> tensors</ span > < span class ="o "> =</ span > < span class ="n "> broadcast_tensors</ span > < span class ="p "> (</ span > < span class ="o "> *</ span > < span class ="n "> tensors</ span > < span class ="p "> )</ span >
542
- < span class ="k "> return</ span > < span class ="n "> tensors</ span > < span class ="p "> [</ span > < span class ="mi "> 0</ span > < span class ="p "> ]</ span > < span class ="o "> .</ span > < span class ="n "> shape</ span > </ div >
542
+ < span class ="k "> return</ span > < span class ="n "> tensors</ span > < span class ="p "> [</ span > < span class ="mi "> 0</ span > < span class ="p "> ]</ span > < span class ="o "> .</ span > < span class ="n "> shape</ span >
543
543
544
544
545
545
@@ -891,7 +891,7 @@ <h1>Source code for torch.functional</h1><div class="highlight"><pre>
891
891
< span class ="n "> indexing</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> str</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> )</ span > < span class ="o "> -></ span > < span class ="n "> Tuple</ span > < span class ="p "> [</ span > < span class ="n "> Tensor</ span > < span class ="p "> ,</ span > < span class ="o "> ...</ span > < span class ="p "> ]:</ span >
892
892
< span class ="k "> return</ span > < span class ="n "> _meshgrid</ span > < span class ="p "> (</ span > < span class ="o "> *</ span > < span class ="n "> tensors</ span > < span class ="p "> ,</ span > < span class ="n "> indexing</ span > < span class ="o "> =</ span > < span class ="n "> indexing</ span > < span class ="p "> )</ span >
893
893
< span class ="k "> else</ span > < span class ="p "> :</ span >
894
- < span class ="k "> def</ span > < span class ="nf "> meshgrid</ span > < span class ="p "> (</ span > < span class ="o "> *</ span > < span class ="n "> tensors</ span > < span class ="p "> ,</ span > < span class ="n "> indexing</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> str</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> )</ span > < span class ="o "> -></ span > < span class ="n "> Tuple</ span > < span class ="p "> [</ span > < span class ="n "> Tensor</ span > < span class ="p "> ,</ span > < span class ="o "> ...</ span > < span class ="p "> ]:</ span >
894
+ < div class =" viewcode-block " id =" meshgrid " > < a class =" viewcode-back " href =" ../../generated/torch.meshgrid.html#torch.meshgrid " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> meshgrid</ span > < span class ="p "> (</ span > < span class ="o "> *</ span > < span class ="n "> tensors</ span > < span class ="p "> ,</ span > < span class ="n "> indexing</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> str</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> )</ span > < span class ="o "> -></ span > < span class ="n "> Tuple</ span > < span class ="p "> [</ span > < span class ="n "> Tensor</ span > < span class ="p "> ,</ span > < span class ="o "> ...</ span > < span class ="p "> ]:</ span >
895
895
< span class ="sa "> r</ span > < span class ="sd "> """Creates grids of coordinates specified by the 1D inputs in `attr`:tensors.</ span >
896
896
897
897
< span class ="sd "> This is helpful when you want to visualize data over some</ span >
@@ -984,7 +984,7 @@ <h1>Source code for torch.functional</h1><div class="highlight"><pre>
984
984
< span class ="sd "> :width: 512</ span >
985
985
986
986
< span class ="sd "> """</ span >
987
- < span class ="k "> return</ span > < span class ="n "> _meshgrid</ span > < span class ="p "> (</ span > < span class ="o "> *</ span > < span class ="n "> tensors</ span > < span class ="p "> ,</ span > < span class ="n "> indexing</ span > < span class ="o "> =</ span > < span class ="n "> indexing</ span > < span class ="p "> )</ span >
987
+ < span class ="k "> return</ span > < span class ="n "> _meshgrid</ span > < span class ="p "> (</ span > < span class ="o "> *</ span > < span class ="n "> tensors</ span > < span class ="p "> ,</ span > < span class ="n "> indexing</ span > < span class ="o "> =</ span > < span class ="n "> indexing</ span > < span class ="p "> )</ span > </ div >
988
988
989
989
990
990
< span class ="k "> def</ span > < span class ="nf "> _meshgrid</ span > < span class ="p "> (</ span > < span class ="o "> *</ span > < span class ="n "> tensors</ span > < span class ="p "> ,</ span > < span class ="n "> indexing</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> str</ span > < span class ="p "> ]):</ span >
@@ -1622,7 +1622,7 @@ <h1>Source code for torch.functional</h1><div class="highlight"><pre>
1622
1622
< span class ="k "> return</ span > < span class ="n "> handle_torch_function</ span > < span class ="p "> (</ span > < span class ="n "> cartesian_prod</ span > < span class ="p "> ,</ span > < span class ="n "> tensors</ span > < span class ="p "> ,</ span > < span class ="o "> *</ span > < span class ="n "> tensors</ span > < span class ="p "> )</ span >
1623
1623
< span class ="k "> return</ span > < span class ="n "> _VF</ span > < span class ="o "> .</ span > < span class ="n "> cartesian_prod</ span > < span class ="p "> (</ span > < span class ="n "> tensors</ span > < span class ="p "> )</ span > < span class ="c1 "> # type: ignore[attr-defined]</ span > </ div >
1624
1624
1625
- < div class =" viewcode-block " id =" block_diag " > < a class =" viewcode-back " href =" ../../generated/torch.block_diag.html#torch.block_diag " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> block_diag</ span > < span class ="p "> (</ span > < span class ="o "> *</ span > < span class ="n "> tensors</ span > < span class ="p "> ):</ span >
1625
+ < span class ="k "> def</ span > < span class ="nf "> block_diag</ span > < span class ="p "> (</ span > < span class ="o "> *</ span > < span class ="n "> tensors</ span > < span class ="p "> ):</ span >
1626
1626
< span class ="sd "> """Create a block diagonal matrix from provided tensors.</ span >
1627
1627
1628
1628
< span class ="sd "> Args:</ span >
@@ -1655,7 +1655,7 @@ <h1>Source code for torch.functional</h1><div class="highlight"><pre>
1655
1655
< span class ="c1 "> # This wrapper exists to support variadic args.</ span >
1656
1656
< span class ="k "> if</ span > < span class ="n "> has_torch_function</ span > < span class ="p "> (</ span > < span class ="n "> tensors</ span > < span class ="p "> ):</ span >
1657
1657
< span class ="k "> return</ span > < span class ="n "> handle_torch_function</ span > < span class ="p "> (</ span > < span class ="n "> block_diag</ span > < span class ="p "> ,</ span > < span class ="n "> tensors</ span > < span class ="p "> ,</ span > < span class ="o "> *</ span > < span class ="n "> tensors</ span > < span class ="p "> )</ span >
1658
- < span class ="k "> return</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _VariableFunctions</ span > < span class ="o "> .</ span > < span class ="n "> block_diag</ span > < span class ="p "> (</ span > < span class ="n "> tensors</ span > < span class ="p "> )</ span > < span class ="c1 "> # type: ignore[attr-defined]</ span > </ div >
1658
+ < span class ="k "> return</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _VariableFunctions</ span > < span class ="o "> .</ span > < span class ="n "> block_diag</ span > < span class ="p "> (</ span > < span class ="n "> tensors</ span > < span class ="p "> )</ span > < span class ="c1 "> # type: ignore[attr-defined]</ span >
1659
1659
1660
1660
1661
1661
< div class ="viewcode-block " id ="cdist "> < a class ="viewcode-back " href ="../../generated/torch.cdist.html#torch.cdist "> [docs]</ a > < span class ="k "> def</ span > < span class ="nf "> cdist</ span > < span class ="p "> (</ span > < span class ="n "> x1</ span > < span class ="p "> ,</ span > < span class ="n "> x2</ span > < span class ="p "> ,</ span > < span class ="n "> p</ span > < span class ="o "> =</ span > < span class ="mf "> 2.</ span > < span class ="p "> ,</ span > < span class ="n "> compute_mode</ span > < span class ="o "> =</ span > < span class ="s1 "> 'use_mm_for_euclid_dist_if_necessary'</ span > < span class ="p "> ):</ span >
0 commit comments