-
Notifications
You must be signed in to change notification settings - Fork 302
/
Copy pathindex.html
745 lines (628 loc) · 41.4 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
<!DOCTYPE html>
<html lang="en">
<head>
<!-- Google Tag Manager -->
<script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start':
new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0],
j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src=
'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f);
})(window,document,'script','dataLayer','GTM-T8XT4PS');</script>
<!-- End Google Tag Manager -->
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="X-UA-Compatible" content="ie=edge">
<link rel="shortcut icon" type="image/x-icon" href="/favicon.ico?">
<title>
Automated trace collection and analysis | PyTorch
</title>
<meta name="robots" content="index, follow" />
<meta name="description" content="In this blog, we share how we enabled the collection and analysis of PyTorch Profiler traces for training workloads without any user side code instrumentation. We leveraged Dynolog - an open source daemon for CPU and GPU telemetry to collect PyTorch Profiler traces, and analyzed the collected traces using Holistic Trace Analysis - an open source library for analyzing PyTorch Profiler traces. This toolchain has allowed engineers at Meta to accelerate their performance optimization workflows. The keystone to our solution was implementing pre and post hooks for the base Optimizer class in PyTorch. We demo PyTorch trace collection using Dynolog in a short video.
" />
<meta property="og:image" content="https://pytorch.org/assets/images/social-share.jpg" />
<meta name="twitter:image" content="https://pytorch.org/assets/images/social-share.jpg" />
<meta property="og:locale" content="en_US" />
<meta property="og:type" content="website" />
<meta property="og:title" content="Automated trace collection and analysis" />
<meta property="og:description" content="In this blog, we share how we enabled the collection and analysis of PyTorch Profiler traces for training workloads without any user side code instrumentation. We leveraged Dynolog - an open source daemon for CPU and GPU telemetry to collect PyTorch Profiler traces, and analyzed the collected traces using Holistic Trace Analysis - an open source library for analyzing PyTorch Profiler traces. This toolchain has allowed engineers at Meta to accelerate their performance optimization workflows. The keystone to our solution was implementing pre and post hooks for the base Optimizer class in PyTorch. We demo PyTorch trace collection using Dynolog in a short video.
" />
<meta property="og:site_name" content="PyTorch" />
<meta name="twitter:card" content="summary_large_image" />
<meta name="twitter:title" content="Automated trace collection and analysis" />
<meta name="twitter:description" content="In this blog, we share how we enabled the collection and analysis of PyTorch Profiler traces for training workloads without any user side code instrumentation. We leveraged Dynolog - an open source daemon for CPU and GPU telemetry to collect PyTorch Profiler traces, and analyzed the collected traces using Holistic Trace Analysis - an open source library for analyzing PyTorch Profiler traces. This toolchain has allowed engineers at Meta to accelerate their performance optimization workflows. The keystone to our solution was implementing pre and post hooks for the base Optimizer class in PyTorch. We demo PyTorch trace collection using Dynolog in a short video.
" />
<link rel="stylesheet" href="/assets/main.css">
<script src="/assets/vendor/jquery.min.js"></script>
<script src="/assets/vendor/popper.min.js"></script>
<script src="/assets/vendor/bootstrap.min.js"></script>
<script src="/assets/vendor/anchor.min.js"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'],
inlineMath: [['$','$']]
}
});
</script>
<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/docsearch.js@2/dist/cdn/docsearch.min.js"></script>
<script>
!function(f,b,e,v,n,t,s)
{if(f.fbq)return;n=f.fbq=function(){n.callMethod?
n.callMethod.apply(n,arguments):n.queue.push(arguments)};
if(!f._fbq)f._fbq=n;n.push=n;n.loaded=!0;n.version='2.0';
n.queue=[];t=b.createElement(e);t.async=!0;
t.src=v;s=b.getElementsByTagName(e)[0];
s.parentNode.insertBefore(t,s)}(window,document,'script',
'https://connect.facebook.net/en_US/fbevents.js');
fbq('init', '243028289693773');
fbq('track', 'PageView');
</script>
<noscript>
<img height="1" width="1"
src="https://www.facebook.com/tr?id=243028289693773&ev=PageView
&noscript=1"/>
</noscript>
<!-- Twitter universal website tag code -->
<img height="1" width="1" style="display:none;" alt="" src="https://analytics.twitter.com/i/adsct?p_id=Twitter&p_user_id=0&txn_id=o2gi1&events=%5B%5B%22pageview%22%2Cnull%5D%5D&tw_sale_amount=0&tw_order_quantity=0 (https://urldefense.proofpoint.com/v2/url?u=https-3A__analytics.twitter.com_i_adsct-3Fp-5Fid-3DTwitter-26p-5Fuser-5Fid-3D0-26txn-5Fid-3Do2gi1-26events-3D-255B-255B-2522pageview-2522-252Cnull-255D-255D-26tw-5Fsale-5Famount-3D0-26tw-5Forder-5Fquantity-3D0&d=DwMGaQ&c=5VD0RTtNlTh3ycd41b3MUw&r=GMr8XYCDyeQQZuD3noL91A&m=dAJyokk16UvYy-vMrGn_JwYiGfp_eEgo25B9iGDCG-A&s=o6i4D0V0088WH2RnzIoqiF-vj45PL-2sTrsxQ0SNO3A&e=)" />
<img height="1" width="1" style="display:none;" alt="" src="//t.co/i/adsct?p_id=Twitter&p_user_id=0&txn_id=o2gi1&events=%5B%5B%22pageview%22%2Cnull%5D%5D&tw_sale_amount=0&tw_order_quantity=0 (https://urldefense.proofpoint.com/v2/url?u=https-3A__linkprotect.cudasvc.com_url-3Fa-3Dhttp-253a-252f-252ft.co-252fi-252fadsct-253fp-5Fid-253dTwitter-2526p-5Fuser-5Fid-253d0-2526txn-5Fid-253do2gi1-2526events-253d-25255B-25255B-252522pageview-252522-25252Cnull-25255D-25255D-2526tw-5Fsale-5Famount-253d0-2526tw-5Forder-5Fquantity-253d0-26c-3DE-2C1-2CC33dLwIhtuEcl5FhdztSnUwsioeej5k-2DWy0RYREBAq51kGji32A2Cw94YU9vQBpY5tPN3AukEw3C-5F-2DlbtndnLoR7-5FA-5FLoH0Rr7zLtP1ykptN-26typo-3D1&d=DwMGaQ&c=5VD0RTtNlTh3ycd41b3MUw&r=GMr8XYCDyeQQZuD3noL91A&m=dAJyokk16UvYy-vMrGn_JwYiGfp_eEgo25B9iGDCG-A&s=Abgc3XBkhESv8XBYtLchdDZyISGsK6v_BB6cLMJGyCw&e=)" />
<!-- End Twitter universal website tag code -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/docsearch.js@2/dist/cdn/docsearch.min.css" />
<link href="/feed.xml" type="application/atom+xml" rel="alternate" title="Pythorch Blog Posts" />
</head>
<body class="blog">
<!-- Google Tag Manager (noscript) -->
<noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T8XT4PS"
height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript>
<!-- End Google Tag Manager (noscript) -->
<div class="main-background blog-background blog-detail-background"></div>
<div class="hello-bar">
<div class="container">
Join us at PyTorch Conference in San Francisco, October 22-23. CFP open now! <a target="_blank" href="https://events.linuxfoundation.org/pytorch-conference/">Learn more</a>.
</div>
</div>
<div class="container-fluid header-holder blog-detail-header">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://pytorch.org" aria-label="PyTorch"></a>
<div class="main-menu">
<ul>
<li class="main-menu-item">
<div id="dropdownMenuButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="with-down-arrow">
Learn
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="/get-started">
<span class=dropdown-title>Get Started</span>
<p>Run PyTorch locally or get started quickly with one of the supported cloud platforms</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/tutorials/">
<span class="dropdown-title">Tutorials</span>
<p>Whats new in PyTorch tutorials</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/tutorials/beginner/basics/intro.html">
<span class="dropdown-title">Learn the Basics</span>
<p>Familiarize yourself with PyTorch concepts and modules</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/tutorials/recipes/recipes_index.html">
<span class="dropdown-title">PyTorch Recipes</span>
<p>Bite-size, ready-to-deploy PyTorch code examples</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/tutorials/beginner/introyt.html">
<span class="dropdown-title">Intro to PyTorch - YouTube Series</span>
<p>Master PyTorch basics with our engaging YouTube tutorial series</p>
</a>
<a class="nav-dropdown-item" href="/new">
<span class="dropdown-title">New to PyTorch Foundation</span>
</a>
</div>
</div>
</li>
<li class="main-menu-item">
<div id="dropdownMenuButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="with-down-arrow">
Ecosystem
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://landscape.pytorch.org/" target="_blank">
<span class="dropdown-title">Tools</span>
<p>Learn about the tools and frameworks in the PyTorch Ecosystem</p>
</a>
<a class="nav-dropdown-item" href="/join-ecosystem">
<span class="dropdown-title">Join the Ecosystem</span>
</a>
<a class="nav-dropdown-item" href="/#community-module">
<span class=dropdown-title>Community</span>
<p>Join the PyTorch developer community to contribute, learn, and get your questions answered.</p>
</a>
<a class="nav-dropdown-item" href="https://discuss.pytorch.org" target="_blank">
<span class=dropdown-title>Forums</span>
<p>A place to discuss PyTorch code, issues, install, research</p>
</a>
<a class="nav-dropdown-item" href="/resources">
<span class=dropdown-title>Developer Resources</span>
<p>Find resources and get questions answered</p>
</a>
<a class="nav-dropdown-item" href="/ecosystem/contributor-awards-2024">
<span class="dropdown-title">Contributor Awards - 2024</span>
<p>Award winners announced at this year's PyTorch Conference</p>
</a>
</div>
</div>
</li>
<li class="main-menu-item">
<div id="dropdownMenuButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="with-down-arrow">
Edge
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="/edge">
<span class="dropdown-title">About PyTorch Edge</span>
<p>Build innovative and privacy-aware AI experiences for edge devices</p>
</a>
<a class="nav-dropdown-item" href="/executorch-overview">
<span class="dropdown-title">ExecuTorch</span>
<p>End-to-end solution for enabling on-device inference capabilities across mobile and edge devices</p>
</a>
<a class="nav-dropdown-item" target="_blank" href="https://pytorch.org/executorch/stable/index.html">
<span class="dropdown-title">ExecuTorch Documentation</span>
</a>
</div>
</div>
</li>
<li class="main-menu-item">
<div id="docsDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="with-down-arrow">
Docs
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/docs">
<span class="dropdown-title">PyTorch</span>
<p>Explore the documentation for comprehensive guidance on how to use PyTorch.</p>
</a>
<a class="nav-dropdown-item" href="/pytorch-domains">
<span class="dropdown-title">PyTorch Domains</span>
<p> Read the PyTorch Domains documentation to learn more about domain-specific libraries.</p>
</a>
</div>
</div>
</li>
<li class="main-menu-item">
<div id="dropdownMenuButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="with-down-arrow">
Blog & News
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="/blog">
<span class="dropdown-title">PyTorch Blog</span>
<p>Catch up on the latest technical news and happenings</p>
</a>
<a class="nav-dropdown-item" href="/community-blog">
<span class="dropdown-title">Community Blog</span>
<p>Stories from the PyTorch ecosystem</p>
</a>
<a class="nav-dropdown-item" href="/videos">
<span class="dropdown-title">Videos</span>
<p>Learn about the latest PyTorch tutorials, new, and more </p>
</a>
<a class="nav-dropdown-item" href="/community-stories">
<span class="dropdown-title">Community Stories</span>
<p>Learn how our community solves real, everyday machine learning problems with PyTorch</p>
</a>
<a class="nav-dropdown-item" href="/events">
<span class=dropdown-title>Events</span>
<p>Find events, webinars, and podcasts</p>
</a>
<a class="nav-dropdown-item" href="/newsletter">
<span class=dropdown-title>Newsletter</span>
<p>Stay up-to-date with the latest updates</p>
</a>
</div>
</div>
</li>
<li class="main-menu-item">
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="with-down-arrow">
About
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="/foundation">
<span class=dropdown-title>PyTorch Foundation</span>
<p>Learn more about the PyTorch Foundation.</p>
</a>
<a class="nav-dropdown-item" href="/governing-board">
<span class=dropdown-title>Governing Board</span>
</a>
<a class="nav-dropdown-item" href="/credits">
<span class=dropdown-title>Cloud Credit Program</span>
</a>
<a class="nav-dropdown-item" href="/tac">
<span class=dropdown-title>Technical Advisory Council</span>
</a>
<a class="nav-dropdown-item" href="/staff">
<span class=dropdown-title>Staff</span>
</a>
<a class="nav-dropdown-item" href="/contact-us">
<span class=dropdown-title>Contact Us</span>
</a>
</div>
</div>
</li>
<li class="main-menu-item">
<a href="/join" data-cta="join">
Become a Member
</a>
</li>
<li class="main-menu-item" id="github-main-menu-link">
<a href="https://github.com/pytorch/pytorch" title="Go to PyTorch GitHub">
<div id="topnav-gh-icon"></div>
</a>
</li>
<li class="navSearchWrapper reactNavSearchWrapper" key="search">
<div class="search-border">
<div id="search-icon"></div>
<input
id="search-input"
type="text"
title="Search"
/>
<div id="close-search">X</div>
</div>
</li>
</ul>
</div>
<script src="/assets/main-menu-dropdown.js"></script>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<div class="jumbotron jumbotron-fluid blog-detail-jumbotron">
<div class="container blog-detail-container">
<p class="featured-post">September 05, 2023</p>
<h1>
<a class="blog-title">Automated trace collection and analysis</a>
</h1>
</div>
</div>
<div class="main-content-wrapper blog-detail-wrapper">
<div class="main-content blog-detail-content">
<div class="container">
<img src="/assets/images/logo-icon.svg" class="img-fluid author-icon">
<article class="pytorch-article">
<p class="author">
by
Anupam Bhatnagar, Brian Coutinho
</p>
<p>In this blog, we share how we enabled the collection and analysis of PyTorch Profiler traces for training workloads <strong>without any user side code instrumentation</strong>. We leveraged Dynolog - an open source daemon for CPU and GPU telemetry to collect PyTorch Profiler traces, and analyzed the collected traces using Holistic Trace Analysis - an open source library for analyzing PyTorch Profiler traces. This toolchain has allowed engineers at Meta to accelerate their performance optimization workflows. The keystone to our solution was implementing pre and post hooks for the base Optimizer class in PyTorch. We demo PyTorch trace collection using Dynolog in a short video.</p>
<h2 id="problem">Problem</h2>
<p>Software developers at Meta run a large number of distributed training runs daily. In order to ensure that GPUs are being used effectively it is necessary to measure and analyze GPU performance for all jobs. Moreover, developers need the capability to introspect models and understand how CPUs and GPUs interact to debug performance issues. Developers build initial prototypes using a handful of GPUs and the production versions scale out to hundreds or thousands of GPUs, serving numerous business use cases such as generative AI, recommendation systems, ad ranking etc.</p>
<p>Given the scale at Meta, it is necessary to have toolchains for performance measurement and monitoring which have low overhead and operate seamlessly with each other, to maintain high developer efficiency.</p>
<p>In this blog, we describe how we use the PyTorch Profiler, Dynolog (a telemetry daemon) and Holistic Trace Analysis (a performance debugging library) to collect traces without any user side code instrumentation and analyze them to identify jobs with low GPU utilization.</p>
<h2 id="solution">Solution</h2>
<p>The diagram below shares an overview of how the toolchain works together.</p>
<ol>
<li>User launches a PyTorch application.</li>
<li>A training service or user triggers a profiling session using the Dynolog CLI which sends a request over the network to the Dynolog daemon.</li>
<li>Dynolog daemon relays the profiling configuration to the PyTorch application, setting it temporarily in a profiling mode.</li>
<li>PyTorch Profiler collects a trace and stores it to the database (e.g., network file system or S3 bucket).</li>
<li>The collected traces are then analyzed using Holistic Trace Analysis (HTA).</li>
</ol>
<p><img src="/assets/images/dyno_hta.png" alt="Figure 1: Dynolog, PyTorch Profiler and HTA toolchain workflow" style="width:100%; max-width: 662px; display: block; margin-left: auto; margin-right: auto" /></p>
<div class="mb-3" style="text-align: center">
<small style="line-height: 1.1"><em><strong>Figure 1</strong>: Dynolog, PyTorch Profiler and HTA toolchain workflow</em></small>
</div>
<p>Let’s dig a bit deeper in each of the components.</p>
<h3 id="dynolog">Dynolog</h3>
<p><a href="https://developers.facebook.com/blog/post/2022/11/16/dynolog-open-source-system-observability/">Dynolog</a> is a lightweight monitoring daemon for heterogeneous CPU-GPU systems. It supports continuous monitoring of <a href="https://github.com/facebookincubator/dynolog/blob/main/docs/Metrics.md">performance metrics</a> from the CPU (utilization, network bandwidth, instructions/second) and GPU (SM Occupancy, DRAM bandwidth, GPU power draw). Additionally, dynolog exports APIs to collect deep-dive profiling data that can be accessed via the dyno CLI.</p>
<p>One of the chief integrations Dynolog offers is interfacing with the <a href="https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html">PyTorch Profiler</a>. This enables <a href="https://pytorch.org/blog/performance-debugging-of-production-pytorch-models-at-meta/">on-demand remote tracing</a> using a single command to trace thousands of servers. This can be accomplished by using the <code class="language-plaintext highlighter-rouge">dyno gputrace</code> command.</p>
<h3 id="pytorch-profiler">PyTorch Profiler</h3>
<p>GPU kernels execute asynchronously, and GPU-side support is needed to create the trace. NVIDIA provides this visibility via the CUPTI library. Kineto is the subsystem within Profiler that interfaces with CUPTI. The <a href="https://pytorch.org/blog/introducing-pytorch-profiler-the-new-and-improved-performance-tool/">PyTorch Profiler</a> leverages the <a href="https://github.com/pytorch/kineto">Kineto library</a> to collect GPU traces. To enable automated profiling of training workloads at scale <strong>without any user side code instrumentation</strong> we made a few fundamental changes to PyTorch. These changes enable trace collection without any user intervention.</p>
<ul>
<li>Registration:** **First, we modified PyTorch to register with the Dynolog daemon on start up. This feature is switched on by setting the environment variable KINETO_USE_DAEMON=True. With this environment variable set to True, the PyTorch Profiler periodically polls Dynolog to check for on-demand tracing requests.</li>
<li>Iteration hooks: Then, we <a href="https://github.com/pytorch/pytorch/pull/89176">implemented pre and post hooks for the base Optimizer class</a>. This allowed us to annotate start/end of training iterations. The profiler is then aware of the iteration count and can safely capture a fixed number of iterations in the trace.</li>
</ul>
<h3 id="holistic-trace-analysis-hta">Holistic Trace Analysis (HTA)</h3>
<p>ML researchers and engineers often struggle to computationally scale up their models as they are unaware of the performance bottlenecks in their workloads. Large distributed training jobs could generate thousands of traces, containing way too much data for a human to inspect. This is where <a href="https://pytorch.org/blog/trace-analysis-for-masses/">Holistic Trace Analysis</a> comes in. HTA is an open source library for performance analysis - it takes as input PyTorch Profiler traces and up-levels the performance information contained in them. Its goal is to help researchers and engineers achieve the best performance from the hardware stack. To aid performance debugging HTA provides the following features (partial list):</p>
<ul>
<li><a href="https://hta.readthedocs.io/en/latest/source/features/temporal_breakdown.html">Temporal Breakdown</a>: Breakdown of GPU time in terms of time spent in computation, communication, memory events, and idle time on a single node and across all ranks.</li>
<li><a href="https://hta.readthedocs.io/en/latest/source/features/idle_time_breakdown.html">Idle Time Breakdown</a>: Breakdown of GPU idle time into waiting for the host, waiting for another kernel or attributed to an unknown cause.</li>
<li><a href="https://hta.readthedocs.io/en/latest/source/features/kernel_breakdown.html">Kernel Breakdown</a>: Find kernels with the longest duration on each rank.</li>
<li><a href="https://hta.readthedocs.io/en/latest/source/features/kernel_breakdown.html#kernel-duration-distribution">Kernel Duration Distribution</a>: Distribution of average time taken by longest kernels across different ranks.</li>
<li><a href="https://hta.readthedocs.io/en/latest/source/features/comm_comp_overlap.html">Communication Computation Overlap</a>: Calculate the percentage of time when communication overlaps computation.</li>
</ul>
<p>We invite you to check out these <a href="https://github.com/facebookresearch/HolisticTraceAnalysis/tree/main/examples">Jupyter notebooks</a> to see what HTA can do for you. If you are a first time user we recommend starting with the <a href="https://github.com/facebookresearch/HolisticTraceAnalysis/blob/main/examples/trace_analysis_demo.ipynb">trace_analysis_demo</a> notebook.</p>
<p>To summarize, Dynolog allows us to collect PyTorch Profiler traces on-the-fly in a scalable manner. Furthermore, by leveraging HTA we can automate performance analysis and identify bottlenecks. At Meta, we use the Dynolog, PyTorch Profiler and HTA toolchain to accelerate our performance optimization workflows.</p>
<h2 id="demo">Demo</h2>
<p>We share a screencast showcasing trace collection without any user side code instrumentation for a toy PyTorch program. The demo runs in a docker container and the trace collection is triggered using Dynolog. HTA can be used to subsequently analyze the collected trace.</p>
<iframe width="560" height="315" src="https://www.youtube.com/embed/FjmHYMJLIdw?si=xahelamoBIja94Ox" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen=""></iframe>
<h2 id="faqs">FAQs</h2>
<p><em>Q. What else can <code class="language-plaintext highlighter-rouge">dyno gputrace</code> do for me?</em></p>
<p>The <code class="language-plaintext highlighter-rouge">dyno gputrace</code> command supports several custom PyTorch Profiler options:</p>
<ul>
<li>capturing python stacks</li>
<li>memory profiling</li>
<li>record input shapes</li>
</ul>
<p>Please run <code class="language-plaintext highlighter-rouge">dyno gputrace --help</code> for all the options.</p>
<p><em>Q. Does Dynolog collect hardware performance metrics?</em></p>
<p>Dynolog can also be used for always-on monitoring:</p>
<ul>
<li>It incorporates out-of-box <a href="https://github.com/facebookincubator/dynolog/tree/main#gpu-monitoring">GPU performance monitoring</a> for NVIDIA GPUs using <a href="https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/index.html#">DCGM</a>.</li>
<li>Dynolog provides basic Linux kernel <a href="https://github.com/facebookincubator/dynolog/blob/main/docs/Metrics.md">performance metrics</a> including CPU, network and IO resource usage.</li>
<li>Dynolog manages hardware performance counters for micro-architecture specific events related to CPU Cache, TLBs etc on Intel and AMD CPUs.</li>
</ul>
<p><em>Q: How can I build the Docker image used in the demo?</em></p>
<p>The dockerfile is available <a href="https://github.com/facebookincubator/dynolog/blob/main/dynolog_hta.dockerfile">here</a>. Use the command below to build the Docker image.</p>
<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>docker build -f /path/to/dynolog_repo/dynolog_hta.dockerfile -t <image_name:tag> .
</code></pre></div></div>
<p><em>Q. How can I run the docker image?</em></p>
<p>You can refer to this <a href="https://gist.github.com/anupambhatnagar/07ebff374bc45e4b63eb42893cca7e87">cheat sheet</a> to run the Docker image.</p>
</article>
</div>
</div>
</div>
<!--
-->
<div class="container-fluid docs-tutorials-resources">
<div class="container">
<div class="row">
<div class="col-md-4 text-center">
<h2>Docs</h2>
<p>Access comprehensive developer documentation for PyTorch</p>
<a class="with-right-arrow" href="/docs">View Docs</a>
</div>
<div class="col-md-4 text-center">
<h2>Tutorials</h2>
<p>Get in-depth tutorials for beginners and advanced developers</p>
<a class="with-right-arrow" href="https://pytorch.org/tutorials">View Tutorials</a>
</div>
<div class="col-md-4 text-center">
<h2>Resources</h2>
<p>Find development resources and get your questions answered</p>
<a class="with-right-arrow" href="/resources">View Resources</a>
</div>
</div>
</div>
</div>
<footer class="site-footer">
<div class="container footer-container">
<div class="newsletter" id="newsletter">
<p
class="newsletter__title is-style-max-width-800"><strong>Stay in touch</strong> for updates, event info, and the latest news</p>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/embed/v2.js"></script>
<script>
hbspt.forms.create({
region: "na1",
portalId: "8112310",
formId: "2fb2231c-000b-4ec5-88a0-1ab242549c9e"
});
</script>
<p
class="newsletter__privacy">By submitting this form, I consent to receive marketing emails from the LF and its projects regarding their events, training, research, developments, and related announcements. I understand that I can unsubscribe at any time using the links in the footers of the emails I receive. <a href="https://www.linuxfoundation.org/privacy/">Privacy Policy</a>.</p>
</div>
<div class="lf-grid">
<div class="footer-logo-wrapper">
<a href="https://pytorch.org" class="footer-logo">
<img src="/assets/images/logo-icon.svg" alt="PyTorch logo" width="40">
</a>
</div>
<ul class="social-links">
<li><a href="https://www.facebook.com/pytorch" target="_blank" title="PyTorch on Facebook">
<svg xmlns="http://www.w3.org/2000/svg" viewbox="-0.51 -0.26 26.45 26.45" aria-label="Facebook"><path fill="currentColor" d="M25.497 13.075c0-2.45-.698-4.848-2.011-6.911a12.765 12.765 0 0 0-5.398-4.73A12.671 12.671 0 0 0 11.008.38a12.705 12.705 0 0 0-6.529 2.95A12.827 12.827 0 0 0 .563 9.358a12.896 12.896 0 0 0-.07 7.201 12.831 12.831 0 0 0 3.801 6.103 12.709 12.709 0 0 0 6.471 3.078v-8.957H7.53v-3.708h3.235v-2.824c0-3.213 1.903-4.988 4.813-4.988.956.014 1.909.097 2.852.25V8.67h-1.607a1.83 1.83 0 0 0-1.518.497 1.854 1.854 0 0 0-.561 1.505v2.404h3.535l-.563 3.708h-2.97v8.957a12.725 12.725 0 0 0 7.697-4.337 12.87 12.87 0 0 0 3.054-8.328z"/></svg>
</a></li>
<li><a href="https://twitter.com/pytorch" target="_blank" title="PyTorch on X">
<svg xmlns="http://www.w3.org/2000/svg" viewbox="0 0 300 300" aria-label="X"><path fill="currentColor" d="M178.57 127.15 290.27 0h-26.46l-97.03 110.38L89.34 0H0l117.13 166.93L0 300.25h26.46l102.4-116.59 81.8 116.59h89.34M36.01 19.54H76.66l187.13 262.13h-40.66"/></svg>
</a></li>
<li><a href="https://www.youtube.com/pytorch" target="_blank" title="PyTorch on YouTube">
<svg xmlns="http://www.w3.org/2000/svg" viewbox="0.21 0.27 34.45 25.07" aria-label="YouTube"><path fill="currentColor" d="M33.729 6.084s-.327-2.33-1.317-3.356a4.691 4.691 0 0 0-3.32-1.432c-4.634-.34-11.589-.34-11.589-.34h-.014s-6.954 0-11.59.342a4.692 4.692 0 0 0-3.32 1.432c-.993 1.025-1.315 3.354-1.315 3.354a52.189 52.189 0 0 0-.331 5.473v2.566c.014 1.829.125 3.656.331 5.472 0 0 .322 2.33 1.316 3.36 1.26 1.345 2.916 1.3 3.653 1.445 2.65.26 11.263.34 11.263.34s6.96-.01 11.597-.353a4.691 4.691 0 0 0 3.32-1.432c.993-1.026 1.316-3.356 1.316-3.356.206-1.817.316-3.644.33-5.473v-2.57a52.26 52.26 0 0 0-.33-5.472zM14.076 17.232V7.729l8.951 4.768-8.95 4.735z"/></svg>
</a></li>
<li><a href="https://www.linkedin.com/company/pytorch" target="_blank" title="PyTorch on LinkedIn">
<svg xmlns="http://www.w3.org/2000/svg" viewbox="-10.23 -10.23 531.96 531.96" aria-label="LinkedIn"><rect width="512" height="512" rx="0" fill="currentColor"/><circle fill="#000" cx="142" cy="138" r="37"/><path stroke="#000" stroke-width="66" d="M244 194v198M142 194v198"/><path fill="#000" d="M276 282c0-20 13-40 36-40 24 0 33 18 33 45v105h66V279c0-61-32-89-76-89-34 0-51 19-59 32"/></svg>
</a></li>
<li><a href="https://join.slack.com/t/pytorch/shared_invite/zt-2j2la612p-miUinTTaxXczKOJw48poHA" target="_blank" title="PyTorch Slack">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0.16 -0.03 21.19 21.19" aria-label="Slack"><path fill="currentColor" d="M4.896 13.27a2.147 2.147 0 0 1-2.141 2.142A2.147 2.147 0 0 1 .613 13.27c0-1.178.963-2.141 2.142-2.141h2.141v2.141zm1.08 0c0-1.178.962-2.141 2.141-2.141s2.142.963 2.142 2.141v5.363a2.147 2.147 0 0 1-2.142 2.141 2.147 2.147 0 0 1-2.141-2.142V13.27zm2.141-8.6a2.147 2.147 0 0 1-2.141-2.14c0-1.18.962-2.142 2.141-2.142s2.142.963 2.142 2.141v2.142H8.117zm0 1.08c1.179 0 2.141.962 2.141 2.141a2.147 2.147 0 0 1-2.141 2.142H2.755A2.147 2.147 0 0 1 .613 7.89c0-1.179.963-2.141 2.142-2.141h5.362zm8.599 2.141c0-1.179.963-2.141 2.141-2.141 1.179 0 2.143.962 2.143 2.14a2.147 2.147 0 0 1-2.142 2.142h-2.141V7.89zm-1.08 0a2.147 2.147 0 0 1-2.141 2.142 2.147 2.147 0 0 1-2.141-2.142V2.53c0-1.178.962-2.141 2.141-2.141s2.142.963 2.142 2.141v5.362zm-2.141 8.6c1.179 0 2.142.962 2.142 2.14a2.147 2.147 0 0 1-2.142 2.142 2.147 2.147 0 0 1-2.141-2.141V16.49h2.141zm0-1.08a2.147 2.147 0 0 1-2.141-2.141c0-1.179.962-2.142 2.141-2.142h5.362c1.179 0 2.142.963 2.142 2.142a2.147 2.147 0 0 1-2.142 2.142h-5.362z"></path></svg>
</a></li>
<li><a href="/wechat" title="PyTorch on WeChat">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0.14 -0.17 38.02 33.02" aria-label="WeChat"><path fill="currentColor" d="M26.289 10.976a12.972 12.972 0 0 0-8.742 3.53 10.386 10.386 0 0 0-3.224 8.795c-1.326-.164-2.535-.345-3.75-.448a2.332 2.332 0 0 0-1.273.216c-1.18.666-2.311 1.418-3.652 2.255.246-1.112.405-2.087.687-3.024a1.15 1.15 0 0 0-.523-1.52C1.737 17.902.02 13.601 1.307 9.165c1.189-4.1 4.11-6.587 8.077-7.884A13.54 13.54 0 0 1 24.18 5.617a10.135 10.135 0 0 1 2.109 5.359zM10.668 9.594a1.564 1.564 0 0 0-2.095-1.472 1.52 1.52 0 0 0-.895 1.964 1.502 1.502 0 0 0 1.391.966 1.545 1.545 0 0 0 1.598-1.46v.002zm8.15-1.566a1.567 1.567 0 0 0-1.528 1.543 1.528 1.528 0 0 0 1.571 1.492 1.52 1.52 0 0 0 1.375-2.117 1.518 1.518 0 0 0-1.415-.919l-.003.001z"></path><path fill="currentColor" d="M33.914 32.137c-1.075-.478-2.062-1.196-3.11-1.306-1.049-.11-2.145.494-3.24.605a10.821 10.821 0 0 1-8.781-2.864c-4.682-4.33-4.013-10.97 1.403-14.518 4.811-3.154 11.874-2.102 15.268 2.273a8.671 8.671 0 0 1-1.002 12.095c-1.046.929-1.422 1.693-.751 2.917.102.257.174.525.213.798zM21.68 20.292a1.264 1.264 0 1 0 .01-2.528 1.264 1.264 0 0 0-.01 2.528zm7.887-2.526a1.266 1.266 0 0 0-1.256 1.21 1.247 1.247 0 1 0 1.256-1.21z"></path></svg>
</a></li>
</ul>
</div>
<div class="privacy-policy">
<div class="copyright">
<p>© Copyright The Linux Foundation. The PyTorch Foundation is a project of The Linux Foundation.
For web site terms of use, trademark policy and other policies applicable to The PyTorch Foundation please see
<a href="https://www.linuxfoundation.org/legal/policies/">Linux Foundation Policies</a>. The PyTorch Foundation supports the PyTorch open source
project, which has been established as PyTorch Project a Series of LF Projects, LLC. For policies applicable to the PyTorch Project a Series of LF Projects, LLC,
please see <a href="https://www.lfprojects.org/policies/">LF Projects, LLC Policies</a>. <a href="https://www.linuxfoundation.org/privacy">Privacy Policy</a> and <a href="https://www.linuxfoundation.org/terms">Terms of Use</a>.</p>
</div>
</div>
</div>
</footer>
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li class="navSearchWrapper reactNavSearchWrapper tabletSearchWrapper" key="search">
<div class="mobile-search-border">
<input
id="mobile-search-input"
type="text"
title="Search"
/>
<div id="mobile-search-icon"></div>
</div>
</li>
<li class="resources-mobile-menu-title">
<a>Learn</a>
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li>
<a href="https://pytorch.org/tutorials/beginner/basics/intro.html">Learn the Basics</a>
</li>
<li>
<a href="https://pytorch.org/tutorials/recipes/recipes_index.html">PyTorch Recipes</a>
</li>
<li>
<a href="https://pytorch.org/tutorials/beginner/introyt.html">Introduction to PyTorch - YouTube Series</a>
</li>
<li>
<a href="/new">New to PyTorch Foundation</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
<a>Ecosystem</a>
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="https://landscape.pytorch.org/">Tools</a>
</li>
<li>
<a href="/join-ecosystem">Join the Ecosystem</a>
</li>
<li>
<a href="/#community-module">Community</a>
</li>
<li>
<a href="https://discuss.pytorch.org">Forums</a>
</li>
<li>
<a href="/resources">Developer Resources</a>
</li>
<li>
<a href="/ecosystem/contributor-awards-2024">Contributor Awards - 2024</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
<a>Edge</a>
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="/edge">About PyTorch Edge</a>
</li>
<li>
<a href="/executorch-overview">ExecuTorch</a>
</li>
<li>
<a href="https://pytorch.org/executorch/stable/index.html">ExecuTorch Documentation</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
<a>Docs</a>
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="https://pytorch.org/docs">PyTorch</a>
</li>
<li>
<a href="/pytorch-domains">PyTorch Domains</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
<a>Blog & News</a>
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="/blog">PyTorch Blog</a>
</li>
<li>
<a href="/community-blog">Community Blog</a>
</li>
<li>
<a href="/videos">Videos</a>
</li>
<li>
<a href="/community-stories">Community Stories</a>
</li>
<li>
<a href="/events">Events</a>
</li>
<li>
<a href="/newsletter">Newsletter</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
<a>About</a>
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="/foundation">PyTorch Foundation</a>
</li>
<li>
<a href="/governing-board">Governing Board</a>
</li>
<li>
<a href="/credits">Cloud Credit Program</a>
</li>
<li>
<a href="/tac">Technical Advisory Council</a>
</li>
<li>
<a href="/staff">Staff</a>
</li>
<li>
<a href="/contact-us">Contact Us</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
<a href="/join">Become a Member</a>
</li>
<li class="resources-mobile-menu-title">
<a href="https://github.com/pytorch/pytorch" title="Go to PyTorch GitHub"><div id="topnav-gh-icon"></div></a>
</li>
</ul>
</div>
</div>
</div>
<script src="/assets/mobile-menu.js"></script>
<script src="/assets/scroll-to-anchor.js"></script>
<script src="/assets/external-links-new-tab.js"></script>
<script src="/assets/search-bar.js"></script>
<script src="/assets/cookie-banner.js"></script>
<script type="text/javascript">
mobileMenu.bind();
anchors.add('.pytorch-article h2, .pytorch-article h3, .pytorch-article h4, .pytorch-article h5');
// Add class to links that have code blocks, since we cannot create links in code blocks
$("a code.highlighter-rouge").each(function(e) {
$(this).closest("a").addClass("has-code");
});
scrollToAnchor.bind();
var hasStaticHeader = $(".blog-header, .blog-detail-header, .resources-header, .get-started-header, .features-header, .ecosystem-header, .hub-header, .mobile-header, .announcement-header, .comm-stories-header").length > 0;
if (!hasStaticHeader) {
$(window).on("scroll", function() {
var top = $(this).scrollTop();
var fullPosition = $(".main-background").height() - $(".header-holder").height();
if (top <= 40) {
$(".header-holder").css({"backgroundColor": "rgba(0, 0, 0, 0.165)"});
} else if (top >= fullPosition) {
$(".header-holder").css({"backgroundColor": "#000000"});
} else {
var bgColor = "rgba(0, 0, 0, " + top / fullPosition + ")";
$(".header-holder").css({"backgroundColor": bgColor});
}
});
}
</script>
<script src="/assets/track-events.js"></script>
<script>trackEvents.bind();</script>
<div class="cookie-banner-wrapper">
<div class="container">
<p class="gdpr-notice">To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: <a href="https://www.facebook.com/policies/cookies/">Cookies Policy</a>.</p>
<img class="close-button" src="/assets/images/pytorch-x.svg">
</div>
</div>
</body>
</html>