-
Notifications
You must be signed in to change notification settings - Fork 302
/
Copy pathindex.html
831 lines (680 loc) · 44.1 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
<!DOCTYPE html>
<html lang="en">
<head>
<!-- Google Tag Manager -->
<script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start':
new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0],
j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src=
'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f);
})(window,document,'script','dataLayer','GTM-T8XT4PS');</script>
<!-- End Google Tag Manager -->
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="X-UA-Compatible" content="ie=edge">
<link rel="shortcut icon" type="image/x-icon" href="/favicon.ico?">
<title>
Current and New Activation Checkpointing Techniques in PyTorch | PyTorch
</title>
<meta name="robots" content="index, follow" />
<meta name="description" content="As models scale in depth, batch size, and sequence length, etc, activation memory becomes an increasingly significant contributor to the overall memory usage. To help address this, PyTorch provides utilities for activation checkpointing, which reduce the number of saved tensors by recomputing them when needed, trading off memory usage for additional compute.
" />
<meta property="og:image" content="https://pytorch.org/assets/images/social-share.jpg" />
<meta name="twitter:image" content="https://pytorch.org/assets/images/social-share.jpg" />
<meta property="og:locale" content="en_US" />
<meta property="og:type" content="website" />
<meta property="og:title" content="Current and New Activation Checkpointing Techniques in PyTorch" />
<meta property="og:description" content="As models scale in depth, batch size, and sequence length, etc, activation memory becomes an increasingly significant contributor to the overall memory usage. To help address this, PyTorch provides utilities for activation checkpointing, which reduce the number of saved tensors by recomputing them when needed, trading off memory usage for additional compute.
" />
<meta property="og:site_name" content="PyTorch" />
<meta name="twitter:card" content="summary_large_image" />
<meta name="twitter:title" content="Current and New Activation Checkpointing Techniques in PyTorch" />
<meta name="twitter:description" content="As models scale in depth, batch size, and sequence length, etc, activation memory becomes an increasingly significant contributor to the overall memory usage. To help address this, PyTorch provides utilities for activation checkpointing, which reduce the number of saved tensors by recomputing them when needed, trading off memory usage for additional compute.
" />
<link rel="stylesheet" href="/assets/main.css">
<script src="/assets/vendor/jquery.min.js"></script>
<script src="/assets/vendor/popper.min.js"></script>
<script src="/assets/vendor/bootstrap.min.js"></script>
<script src="/assets/vendor/anchor.min.js"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'],
inlineMath: [['$','$']]
}
});
</script>
<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/docsearch.js@2/dist/cdn/docsearch.min.js"></script>
<script>
!function(f,b,e,v,n,t,s)
{if(f.fbq)return;n=f.fbq=function(){n.callMethod?
n.callMethod.apply(n,arguments):n.queue.push(arguments)};
if(!f._fbq)f._fbq=n;n.push=n;n.loaded=!0;n.version='2.0';
n.queue=[];t=b.createElement(e);t.async=!0;
t.src=v;s=b.getElementsByTagName(e)[0];
s.parentNode.insertBefore(t,s)}(window,document,'script',
'https://connect.facebook.net/en_US/fbevents.js');
fbq('init', '243028289693773');
fbq('track', 'PageView');
</script>
<noscript>
<img height="1" width="1"
src="https://www.facebook.com/tr?id=243028289693773&ev=PageView
&noscript=1"/>
</noscript>
<!-- Twitter universal website tag code -->
<img height="1" width="1" style="display:none;" alt="" src="https://analytics.twitter.com/i/adsct?p_id=Twitter&p_user_id=0&txn_id=o2gi1&events=%5B%5B%22pageview%22%2Cnull%5D%5D&tw_sale_amount=0&tw_order_quantity=0 (https://urldefense.proofpoint.com/v2/url?u=https-3A__analytics.twitter.com_i_adsct-3Fp-5Fid-3DTwitter-26p-5Fuser-5Fid-3D0-26txn-5Fid-3Do2gi1-26events-3D-255B-255B-2522pageview-2522-252Cnull-255D-255D-26tw-5Fsale-5Famount-3D0-26tw-5Forder-5Fquantity-3D0&d=DwMGaQ&c=5VD0RTtNlTh3ycd41b3MUw&r=GMr8XYCDyeQQZuD3noL91A&m=dAJyokk16UvYy-vMrGn_JwYiGfp_eEgo25B9iGDCG-A&s=o6i4D0V0088WH2RnzIoqiF-vj45PL-2sTrsxQ0SNO3A&e=)" />
<img height="1" width="1" style="display:none;" alt="" src="//t.co/i/adsct?p_id=Twitter&p_user_id=0&txn_id=o2gi1&events=%5B%5B%22pageview%22%2Cnull%5D%5D&tw_sale_amount=0&tw_order_quantity=0 (https://urldefense.proofpoint.com/v2/url?u=https-3A__linkprotect.cudasvc.com_url-3Fa-3Dhttp-253a-252f-252ft.co-252fi-252fadsct-253fp-5Fid-253dTwitter-2526p-5Fuser-5Fid-253d0-2526txn-5Fid-253do2gi1-2526events-253d-25255B-25255B-252522pageview-252522-25252Cnull-25255D-25255D-2526tw-5Fsale-5Famount-253d0-2526tw-5Forder-5Fquantity-253d0-26c-3DE-2C1-2CC33dLwIhtuEcl5FhdztSnUwsioeej5k-2DWy0RYREBAq51kGji32A2Cw94YU9vQBpY5tPN3AukEw3C-5F-2DlbtndnLoR7-5FA-5FLoH0Rr7zLtP1ykptN-26typo-3D1&d=DwMGaQ&c=5VD0RTtNlTh3ycd41b3MUw&r=GMr8XYCDyeQQZuD3noL91A&m=dAJyokk16UvYy-vMrGn_JwYiGfp_eEgo25B9iGDCG-A&s=Abgc3XBkhESv8XBYtLchdDZyISGsK6v_BB6cLMJGyCw&e=)" />
<!-- End Twitter universal website tag code -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/docsearch.js@2/dist/cdn/docsearch.min.css" />
<link href="/feed.xml" type="application/atom+xml" rel="alternate" title="Pythorch Blog Posts" />
</head>
<body class="blog">
<!-- Google Tag Manager (noscript) -->
<noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T8XT4PS"
height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript>
<!-- End Google Tag Manager (noscript) -->
<div class="main-background blog-background blog-detail-background"></div>
<div class="hello-bar">
<div class="container">
Join us at PyTorch Conference in San Francisco, October 22-23. CFP open now! <a target="_blank" href="https://events.linuxfoundation.org/pytorch-conference/">Learn more</a>.
</div>
</div>
<div class="container-fluid header-holder blog-detail-header">
<div class="container">
<div class="header-container">
<a class="header-logo" href="https://pytorch.org" aria-label="PyTorch"></a>
<div class="main-menu">
<ul>
<li class="main-menu-item">
<div id="dropdownMenuButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="with-down-arrow">
Learn
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="/get-started">
<span class=dropdown-title>Get Started</span>
<p>Run PyTorch locally or get started quickly with one of the supported cloud platforms</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/tutorials/">
<span class="dropdown-title">Tutorials</span>
<p>Whats new in PyTorch tutorials</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/tutorials/beginner/basics/intro.html">
<span class="dropdown-title">Learn the Basics</span>
<p>Familiarize yourself with PyTorch concepts and modules</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/tutorials/recipes/recipes_index.html">
<span class="dropdown-title">PyTorch Recipes</span>
<p>Bite-size, ready-to-deploy PyTorch code examples</p>
</a>
<a class="nav-dropdown-item" href="https://pytorch.org/tutorials/beginner/introyt.html">
<span class="dropdown-title">Intro to PyTorch - YouTube Series</span>
<p>Master PyTorch basics with our engaging YouTube tutorial series</p>
</a>
<a class="nav-dropdown-item" href="/new">
<span class="dropdown-title">New to PyTorch Foundation</span>
</a>
</div>
</div>
</li>
<li class="main-menu-item">
<div id="dropdownMenuButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="with-down-arrow">
Ecosystem
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://landscape.pytorch.org/" target="_blank">
<span class="dropdown-title">Tools</span>
<p>Learn about the tools and frameworks in the PyTorch Ecosystem</p>
</a>
<a class="nav-dropdown-item" href="/join-ecosystem">
<span class="dropdown-title">Join the Ecosystem</span>
</a>
<a class="nav-dropdown-item" href="/#community-module">
<span class=dropdown-title>Community</span>
<p>Join the PyTorch developer community to contribute, learn, and get your questions answered.</p>
</a>
<a class="nav-dropdown-item" href="https://discuss.pytorch.org" target="_blank">
<span class=dropdown-title>Forums</span>
<p>A place to discuss PyTorch code, issues, install, research</p>
</a>
<a class="nav-dropdown-item" href="/resources">
<span class=dropdown-title>Developer Resources</span>
<p>Find resources and get questions answered</p>
</a>
<a class="nav-dropdown-item" href="/ecosystem/contributor-awards-2024">
<span class="dropdown-title">Contributor Awards - 2024</span>
<p>Award winners announced at this year's PyTorch Conference</p>
</a>
</div>
</div>
</li>
<li class="main-menu-item">
<div id="dropdownMenuButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="with-down-arrow">
Edge
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="/edge">
<span class="dropdown-title">About PyTorch Edge</span>
<p>Build innovative and privacy-aware AI experiences for edge devices</p>
</a>
<a class="nav-dropdown-item" href="/executorch-overview">
<span class="dropdown-title">ExecuTorch</span>
<p>End-to-end solution for enabling on-device inference capabilities across mobile and edge devices</p>
</a>
<a class="nav-dropdown-item" target="_blank" href="https://pytorch.org/executorch/stable/index.html">
<span class="dropdown-title">ExecuTorch Documentation</span>
</a>
</div>
</div>
</li>
<li class="main-menu-item">
<div id="docsDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="with-down-arrow">
Docs
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="https://pytorch.org/docs">
<span class="dropdown-title">PyTorch</span>
<p>Explore the documentation for comprehensive guidance on how to use PyTorch.</p>
</a>
<a class="nav-dropdown-item" href="/pytorch-domains">
<span class="dropdown-title">PyTorch Domains</span>
<p> Read the PyTorch Domains documentation to learn more about domain-specific libraries.</p>
</a>
</div>
</div>
</li>
<li class="main-menu-item">
<div id="dropdownMenuButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="with-down-arrow">
Blog & News
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="/blog">
<span class="dropdown-title">PyTorch Blog</span>
<p>Catch up on the latest technical news and happenings</p>
</a>
<a class="nav-dropdown-item" href="/community-blog">
<span class="dropdown-title">Community Blog</span>
<p>Stories from the PyTorch ecosystem</p>
</a>
<a class="nav-dropdown-item" href="/videos">
<span class="dropdown-title">Videos</span>
<p>Learn about the latest PyTorch tutorials, new, and more </p>
</a>
<a class="nav-dropdown-item" href="/community-stories">
<span class="dropdown-title">Community Stories</span>
<p>Learn how our community solves real, everyday machine learning problems with PyTorch</p>
</a>
<a class="nav-dropdown-item" href="/events">
<span class=dropdown-title>Events</span>
<p>Find events, webinars, and podcasts</p>
</a>
<a class="nav-dropdown-item" href="/newsletter">
<span class=dropdown-title>Newsletter</span>
<p>Stay up-to-date with the latest updates</p>
</a>
</div>
</div>
</li>
<li class="main-menu-item">
<div id="resourcesDropdownButton" data-toggle="resources-dropdown" class="resources-dropdown">
<a class="with-down-arrow">
About
</a>
<div class="resources-dropdown-menu">
<a class="nav-dropdown-item" href="/foundation">
<span class=dropdown-title>PyTorch Foundation</span>
<p>Learn more about the PyTorch Foundation.</p>
</a>
<a class="nav-dropdown-item" href="/governing-board">
<span class=dropdown-title>Governing Board</span>
</a>
<a class="nav-dropdown-item" href="/credits">
<span class=dropdown-title>Cloud Credit Program</span>
</a>
<a class="nav-dropdown-item" href="/tac">
<span class=dropdown-title>Technical Advisory Council</span>
</a>
<a class="nav-dropdown-item" href="/staff">
<span class=dropdown-title>Staff</span>
</a>
<a class="nav-dropdown-item" href="/contact-us">
<span class=dropdown-title>Contact Us</span>
</a>
</div>
</div>
</li>
<li class="main-menu-item">
<a href="/join" data-cta="join">
Become a Member
</a>
</li>
<li class="main-menu-item" id="github-main-menu-link">
<a href="https://github.com/pytorch/pytorch" title="Go to PyTorch GitHub">
<div id="topnav-gh-icon"></div>
</a>
</li>
<li class="navSearchWrapper reactNavSearchWrapper" key="search">
<div class="search-border">
<div id="search-icon"></div>
<input
id="search-input"
type="text"
title="Search"
/>
<div id="close-search">X</div>
</div>
</li>
</ul>
</div>
<script src="/assets/main-menu-dropdown.js"></script>
<a class="main-menu-open-button" href="#" data-behavior="open-mobile-menu"></a>
</div>
</div>
</div>
<div class="jumbotron jumbotron-fluid blog-detail-jumbotron">
<div class="container blog-detail-container">
<p class="featured-post">March 05, 2025</p>
<h1>
<a class="blog-title">Current and New Activation Checkpointing Techniques in PyTorch</a>
</h1>
</div>
</div>
<div class="main-content-wrapper blog-detail-wrapper">
<div class="main-content blog-detail-content">
<div class="container">
<img src="/assets/images/logo-icon.svg" class="img-fluid author-icon">
<article class="pytorch-article">
<p class="author">
by
Team PyTorch
</p>
<p>As models scale in depth, batch size, and sequence length, etc, activation memory becomes an increasingly significant contributor to the overall memory usage. To help address this, PyTorch provides utilities for <a href="https://pytorch.org/docs/stable/checkpoint.html">activation checkpointing</a>, which reduce the number of saved tensors by recomputing them when needed, trading off memory usage for additional compute.</p>
<p>In this post, we’ll walk through the basics of what activation memory is, the high-level ideas behind existing activation checkpointing techniques, and also introduce some newer techniques that aim to improve flexibility and provide more optimization/automation out of the box.</p>
<p>As we look at these techniques, we’ll compare how these methods fit into a speed vs. memory trade-off diagram and hopefully provide some insight on how to choose the right strategy for your use case.</p>
<p><em>(If you prefer to jump straight to the new APIs, please skip ahead to the “Selective Activation Checkpoint” and “Memory Budget API” sections below.)</em></p>
<p><img src="/assets/images/activation-checkpointing-techniques/fg1.png" alt="flow diagram" style="width:100%" /></p>
<hr />
<h2 id="activation-memory-basics">Activation Memory Basics</h2>
<p>By default, in eager mode (rather than using <code class="language-plaintext highlighter-rouge">torch.compile</code>), PyTorch’s autograd preserves intermediate activations for backward computation. For example, if you call <code class="language-plaintext highlighter-rouge">sin</code> on a tensor <code class="language-plaintext highlighter-rouge">x</code> during the forward pass, autograd must remember <code class="language-plaintext highlighter-rouge">x</code> to compute <code class="language-plaintext highlighter-rouge">cos(x)</code> during backward.</p>
<p><img src="/assets/images/activation-checkpointing-techniques/fg2.png" alt="flow diagram" style="max-width:400px; display: block; margin-left: auto; margin-right: auto" /></p>
<p>If this tensor <code class="language-plaintext highlighter-rouge">x</code> is saved at the beginning of the forward pass, it remains in memory throughout both the forward and backward phases. It can only be cleared after it is used to compute the gradient, which happens at the end of the backward pass (due to the reverse order of execution).</p>
<p>Thus, as you proceed through the forward pass and perform more and more operations, you accumulate more and more activations, resulting in more and more activation memory until it (typically) reaches its peak at the start of backward (at which point activations can start to get cleared).</p>
<p><img src="/assets/images/activation-checkpointing-techniques/fg3.png" alt="flow diagram" style="width:100%" /></p>
<p><em>In the diagram above, the orange boxes represent operations, black arrows represent their tensor inputs and outputs. The black arrows that cross over the right represent tensors that autograd saves for backward.</em></p>
<p>A useful way to visually organize this default saving behavior in eager as well as the techniques we’re about to introduce is based on how they trade off speed versus memory.</p>
<p><img src="/assets/images/activation-checkpointing-techniques/fg4.png" alt="flow diagram" style="width:100%" /></p>
<p>The ideal place to be on this diagram is the top-left, where you have “high” speed but also low memory usage.</p>
<p>We begin by putting the default saving behavior on the <strong>top-right</strong> (for reasons we’ll explain in more detail as we introduce more points for other techniques).</p>
<hr />
<h2 id="activation-checkpointing-ac">Activation Checkpointing (AC)</h2>
<p><strong><a href="https://pytorch.org/docs/stable/checkpoint.html">Activation checkpointing (AC)</a></strong> is a popular technique to reduce memory usage in PyTorch.</p>
<p>During forward, any operations performed inside the AC’d region do not save tensors for backward. (Only the inputs to the function are saved.) During backward, the intermediate activations needed for gradient computation are rematerialized by running the function a second time.</p>
<p><img src="/assets/images/activation-checkpointing-techniques/fg5.png" alt="flow diagram" style="width:100%" /></p>
<p><em>In the diagram (right), the black box shows where activation checkpointing is applied. Compared to the default eager approach (left), this setup results in fewer tensors being saved (1 versus 3).</em></p>
<p>Applying AC on the right parts of the model has the effect of reducing peak memory, because the intermediate activations are no longer materialized in memory when the memory usage typically peaks (at the beginning of backward).</p>
<p>On the speed-versus-memory tradeoff diagram, AC is plotted on the <strong>bottom-left.</strong> Relative to eager mode, it reduces the amount of memory saved for backward but comes with an added cost in compute due to recomputation.</p>
<p><img src="/assets/images/activation-checkpointing-techniques/fg6.png" alt="flow diagram" style="width:100%" /></p>
<p>Note that AC’s speed–memory tradeoff /can/ be adjusted by selecting which parts of the forward pass to checkpoint and by defining how many checkpoint regions to use. However, implementing these changes may require modifying your model’s structure and can be cumbersome depending on how your code is organized. For the purposes of this diagram, we assume only one region is checkpointed; under this assumption, AC appears as a single point on the tradeoff diagram.</p>
<p>Also note that “memory” here does not refer to peak memory usage; rather, it indicates the how much memory is saved for backward for a fixed region.</p>
<hr />
<h2 id="torchcompile-and-min-cut-partitioner">torch.compile and min-cut partitioner</h2>
<p>Another notable approach to keep in mind is <strong>torch.compile</strong> (introduced in PyTorch 2.0). Like activation checkpointing, <code class="language-plaintext highlighter-rouge">torch.compile</code> can also perform some level of recomputation under the hood. Specifically, it traces the forward and backward computations into a single joint graph, which is then processed by a <a href="https://dev-discuss.pytorch.org/t/min-cut-optimal-recomputation-i-e-activation-checkpointing-with-aotautograd/467">“min-cut” partitioner</a>. This partitioner uses a min-cut/max-flow algorithm to split the graph such that it minimizes the number of tensors that need to be saved for backward.</p>
<p>At first glance, this might sound a lot like what we want for activation memory reduction. However, the reality is more nuanced. By default, the partitioner’s primary goal is to reduce runtime. As a result, it only recomputes certain types of operations—primarily simpler, fusible, and non-compute-intensive ops (like pointwise ops).</p>
<p>Placing “compile” on the speed-versus-memory tradeoff diagram…</p>
<p><img src="/assets/images/activation-checkpointing-techniques/fg7.png" alt="flow diagram" style="width:100%" /></p>
<p>It is to the top-left of the eager non-AC point, as we expect <code class="language-plaintext highlighter-rouge">torch.compile</code> to improve on both speed and memory.</p>
<p>On the other hand, relative to activation checkpointing, torch.compile is more conservative about what it recomputes, placing it closer to the top-left on the speed-versus-memory diagram.</p>
<hr />
<h2 id="selective-activation-checkpoint-new">Selective Activation Checkpoint [NEW!]</h2>
<p>While normal checkpointing recomputes every op in a chosen region, <a href="https://pytorch.org/docs/main/checkpoint.html#torch.utils.checkpoint.create_selective_checkpoint_contexts">selective activation checkpointing (SAC)</a> is an additional setting on top of activation checkpointing that you can apply to have a more granular control over which operations to recompute.</p>
<p>This can be useful if you have certain more expensive operations like matmuls which you prefer to avoid recomputing, but still generally want to recompute cheaper operations like pointwise.</p>
<p><img src="/assets/images/activation-checkpointing-techniques/fg8.png" alt="flow diagram" style="width:100%" /></p>
<p><em>Where plain AC (left) would save a single tensor and then recompute the entire AC’d region, with SAC (right) you can selectively save specific operations (marked red) in the region, so you can avoid recomputing them.</em></p>
<p>To specify what to selectively save, you can specify a policy_fn. To illustrate the additional trade offs you can make with this, we present two simple policy functions.</p>
<h3 id="policy-1-not-recomputing-matmuls">Policy 1: Not recomputing matmuls:</h3>
<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>aten = torch.ops.aten
compute_intensive_ops = [
aten.mm,
aten.bmm,
aten.addmm,
]
def policy_fn(ctx, op, *args, **kwargs):
if op in compute_intensive_ops:
return CheckpointPolicy.MUST_SAVE
else:
return CheckpointPolicy.PREFER_RECOMPUTE
</code></pre></div></div>
<p><img src="/assets/images/activation-checkpointing-techniques/fg9.png" alt="flow diagram" style="width:100%" /></p>
<h3 id="policy-2-more-aggressively-save-anything-compute-intensive">Policy 2: More aggressively save anything compute intensive</h3>
<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code># torch/_functorch/partitioners.py
aten = torch.ops.aten
compute_intensive_ops = [
aten.mm,
aten.convolution,
aten.convolution_backward,
aten.bmm,
aten.addmm,
aten._scaled_dot_product_flash_attention,
aten._scaled_dot_product_efficient_attention,
aten._flash_attention_forward,
aten._efficient_attention_forward,
aten.upsample_bilinear2d,
aten._scaled_mm
]
def policy_fn(ctx, op, *args, **kwargs):
if op in compute_intensive_ops:
return CheckpointPolicy.MUST_SAVE
else:
return CheckpointPolicy.PREFER_RECOMPUTE
</code></pre></div></div>
<p><img src="/assets/images/activation-checkpointing-techniques/fg10.png" alt="flow diagram" style="width:100%" /></p>
<p>On the speed-versus-memory diagram, SAC is plotted as a range of points from closer to AC to closer to Eager, depending on your chosen policy.</p>
<p><img src="/assets/images/activation-checkpointing-techniques/fg11.png" alt="flow diagram" style="width:100%" /></p>
<p><strong>Try it out!</strong> (Available in 2.5 as a prototype feature; see <a href="https://pytorch.org/docs/main/checkpoint.html#torch.utils.checkpoint.create_selective_checkpoint_contexts">docs</a> for more info + copy-pastable example)</p>
<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>from torch.utils.checkpoint import checkpoint, create_selective_checkpoint_contexts
# Create a policy function that returns a CheckpointPolicy
def policy_fn(ctx, op, *args, **kwargs):
if op in ops_to_save:
return CheckpointPolicy.MUST_SAVE
else:
return CheckpointPolicy.PREFER_RECOMPUTE
# Use the context_fn= arg of the existing checkpoint API
out = checkpoint(
fn, *args,
use_reentrant=False,
# Fill in SAC context_fn's policy_fn with functools.partial
context_fn=partial(create_selective_checkpoint_contexts, policy_fn),
)
</code></pre></div></div>
<hr />
<h2 id="compile-only-memory-budget-api-new">(compile-only) Memory Budget API [NEW!]</h2>
<p>As mentioned previously, any given SAC policy can be represented as a point on a speed-memory tradeoff diagram. Not all policies are created equal, however. The “optimal” policies are the ones that fall on a pareto curve, e.g. for all policies that incur the same memory overhead, this policy is the one that minimizes the amount of required compute.</p>
<p>For users who are using torch.compile, we offer a <strong>memory budget API</strong> that automatically applies SAC over your compiled region with a pareto-optimal policy given a user-specified “memory budget” between 0 and 1, where a budget of 0 behaves like plain-AC and a budget of 1 behaves like default torch.compile.</p>
<p><img src="/assets/images/activation-checkpointing-techniques/fg12.png" alt="flow diagram" style="width:100%" /></p>
<p>Below are some real results on a transformer model:</p>
<p><img src="/assets/images/activation-checkpointing-techniques/fg13.png" alt="flow diagram" style="width:100%" /></p>
<p>We observe a 50% memory reduction by recomputing only pointwise ops, with a steady drop-off as you recompute more and more of your matmuls. Attention is the most expensive, so you tend to want to recompute those last.</p>
<p><strong>Try it out!</strong> (Available in 2.4 as an experimental feature; see this <a href="https://github.com/pytorch/pytorch/blob/68a363548409a3ff17965770304ee5e12fe718d9/torch/_functorch/config.py#L110-L122">comment block</a> for more info)</p>
<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>torch._dynamo.config.activation_memory_budget = 0.5
out = torch.compile(fn)(inp)
</code></pre></div></div>
<hr />
<h2 id="conclusion">Conclusion</h2>
<p><img src="/assets/images/activation-checkpointing-techniques/fg14.png" alt="flow diagram" style="width:100%" /></p>
<p>In summary, activation checkpointing techniques in PyTorch offer a variety of ways to balance memory and compute demands, from simple region-based checkpointing to more selective and automated methods. By choosing the option that best matches your model’s structure and resource constraints, you can achieve significant memory savings with an acceptable trade-off in compute.</p>
<h2 id="acknowledgements">Acknowledgements</h2>
<p>We would like to thank Meta’s <a href="https://github.com/facebookresearch/xformers">xformers</a> team including <a href="https://github.com/fmassa">Francisco Massa</a> for working on the original version of Selective Activation Checkpoint.</p>
</article>
</div>
</div>
</div>
<!--
-->
<div class="container-fluid docs-tutorials-resources">
<div class="container">
<div class="row">
<div class="col-md-4 text-center">
<h2>Docs</h2>
<p>Access comprehensive developer documentation for PyTorch</p>
<a class="with-right-arrow" href="/docs">View Docs</a>
</div>
<div class="col-md-4 text-center">
<h2>Tutorials</h2>
<p>Get in-depth tutorials for beginners and advanced developers</p>
<a class="with-right-arrow" href="https://pytorch.org/tutorials">View Tutorials</a>
</div>
<div class="col-md-4 text-center">
<h2>Resources</h2>
<p>Find development resources and get your questions answered</p>
<a class="with-right-arrow" href="/resources">View Resources</a>
</div>
</div>
</div>
</div>
<footer class="site-footer">
<div class="container footer-container">
<div class="newsletter" id="newsletter">
<p
class="newsletter__title is-style-max-width-800"><strong>Stay in touch</strong> for updates, event info, and the latest news</p>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/embed/v2.js"></script>
<script>
hbspt.forms.create({
region: "na1",
portalId: "8112310",
formId: "2fb2231c-000b-4ec5-88a0-1ab242549c9e"
});
</script>
<p
class="newsletter__privacy">By submitting this form, I consent to receive marketing emails from the LF and its projects regarding their events, training, research, developments, and related announcements. I understand that I can unsubscribe at any time using the links in the footers of the emails I receive. <a href="https://www.linuxfoundation.org/privacy/">Privacy Policy</a>.</p>
</div>
<div class="lf-grid">
<div class="footer-logo-wrapper">
<a href="https://pytorch.org" class="footer-logo">
<img src="/assets/images/logo-icon.svg" alt="PyTorch logo" width="40">
</a>
</div>
<ul class="social-links">
<li><a href="https://www.facebook.com/pytorch" target="_blank" title="PyTorch on Facebook">
<svg xmlns="http://www.w3.org/2000/svg" viewbox="-0.51 -0.26 26.45 26.45" aria-label="Facebook"><path fill="currentColor" d="M25.497 13.075c0-2.45-.698-4.848-2.011-6.911a12.765 12.765 0 0 0-5.398-4.73A12.671 12.671 0 0 0 11.008.38a12.705 12.705 0 0 0-6.529 2.95A12.827 12.827 0 0 0 .563 9.358a12.896 12.896 0 0 0-.07 7.201 12.831 12.831 0 0 0 3.801 6.103 12.709 12.709 0 0 0 6.471 3.078v-8.957H7.53v-3.708h3.235v-2.824c0-3.213 1.903-4.988 4.813-4.988.956.014 1.909.097 2.852.25V8.67h-1.607a1.83 1.83 0 0 0-1.518.497 1.854 1.854 0 0 0-.561 1.505v2.404h3.535l-.563 3.708h-2.97v8.957a12.725 12.725 0 0 0 7.697-4.337 12.87 12.87 0 0 0 3.054-8.328z"/></svg>
</a></li>
<li><a href="https://twitter.com/pytorch" target="_blank" title="PyTorch on X">
<svg xmlns="http://www.w3.org/2000/svg" viewbox="0 0 300 300" aria-label="X"><path fill="currentColor" d="M178.57 127.15 290.27 0h-26.46l-97.03 110.38L89.34 0H0l117.13 166.93L0 300.25h26.46l102.4-116.59 81.8 116.59h89.34M36.01 19.54H76.66l187.13 262.13h-40.66"/></svg>
</a></li>
<li><a href="https://www.youtube.com/pytorch" target="_blank" title="PyTorch on YouTube">
<svg xmlns="http://www.w3.org/2000/svg" viewbox="0.21 0.27 34.45 25.07" aria-label="YouTube"><path fill="currentColor" d="M33.729 6.084s-.327-2.33-1.317-3.356a4.691 4.691 0 0 0-3.32-1.432c-4.634-.34-11.589-.34-11.589-.34h-.014s-6.954 0-11.59.342a4.692 4.692 0 0 0-3.32 1.432c-.993 1.025-1.315 3.354-1.315 3.354a52.189 52.189 0 0 0-.331 5.473v2.566c.014 1.829.125 3.656.331 5.472 0 0 .322 2.33 1.316 3.36 1.26 1.345 2.916 1.3 3.653 1.445 2.65.26 11.263.34 11.263.34s6.96-.01 11.597-.353a4.691 4.691 0 0 0 3.32-1.432c.993-1.026 1.316-3.356 1.316-3.356.206-1.817.316-3.644.33-5.473v-2.57a52.26 52.26 0 0 0-.33-5.472zM14.076 17.232V7.729l8.951 4.768-8.95 4.735z"/></svg>
</a></li>
<li><a href="https://www.linkedin.com/company/pytorch" target="_blank" title="PyTorch on LinkedIn">
<svg xmlns="http://www.w3.org/2000/svg" viewbox="-10.23 -10.23 531.96 531.96" aria-label="LinkedIn"><rect width="512" height="512" rx="0" fill="currentColor"/><circle fill="#000" cx="142" cy="138" r="37"/><path stroke="#000" stroke-width="66" d="M244 194v198M142 194v198"/><path fill="#000" d="M276 282c0-20 13-40 36-40 24 0 33 18 33 45v105h66V279c0-61-32-89-76-89-34 0-51 19-59 32"/></svg>
</a></li>
<li><a href="https://join.slack.com/t/pytorch/shared_invite/zt-2j2la612p-miUinTTaxXczKOJw48poHA" target="_blank" title="PyTorch Slack">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0.16 -0.03 21.19 21.19" aria-label="Slack"><path fill="currentColor" d="M4.896 13.27a2.147 2.147 0 0 1-2.141 2.142A2.147 2.147 0 0 1 .613 13.27c0-1.178.963-2.141 2.142-2.141h2.141v2.141zm1.08 0c0-1.178.962-2.141 2.141-2.141s2.142.963 2.142 2.141v5.363a2.147 2.147 0 0 1-2.142 2.141 2.147 2.147 0 0 1-2.141-2.142V13.27zm2.141-8.6a2.147 2.147 0 0 1-2.141-2.14c0-1.18.962-2.142 2.141-2.142s2.142.963 2.142 2.141v2.142H8.117zm0 1.08c1.179 0 2.141.962 2.141 2.141a2.147 2.147 0 0 1-2.141 2.142H2.755A2.147 2.147 0 0 1 .613 7.89c0-1.179.963-2.141 2.142-2.141h5.362zm8.599 2.141c0-1.179.963-2.141 2.141-2.141 1.179 0 2.143.962 2.143 2.14a2.147 2.147 0 0 1-2.142 2.142h-2.141V7.89zm-1.08 0a2.147 2.147 0 0 1-2.141 2.142 2.147 2.147 0 0 1-2.141-2.142V2.53c0-1.178.962-2.141 2.141-2.141s2.142.963 2.142 2.141v5.362zm-2.141 8.6c1.179 0 2.142.962 2.142 2.14a2.147 2.147 0 0 1-2.142 2.142 2.147 2.147 0 0 1-2.141-2.141V16.49h2.141zm0-1.08a2.147 2.147 0 0 1-2.141-2.141c0-1.179.962-2.142 2.141-2.142h5.362c1.179 0 2.142.963 2.142 2.142a2.147 2.147 0 0 1-2.142 2.142h-5.362z"></path></svg>
</a></li>
<li><a href="/wechat" title="PyTorch on WeChat">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0.14 -0.17 38.02 33.02" aria-label="WeChat"><path fill="currentColor" d="M26.289 10.976a12.972 12.972 0 0 0-8.742 3.53 10.386 10.386 0 0 0-3.224 8.795c-1.326-.164-2.535-.345-3.75-.448a2.332 2.332 0 0 0-1.273.216c-1.18.666-2.311 1.418-3.652 2.255.246-1.112.405-2.087.687-3.024a1.15 1.15 0 0 0-.523-1.52C1.737 17.902.02 13.601 1.307 9.165c1.189-4.1 4.11-6.587 8.077-7.884A13.54 13.54 0 0 1 24.18 5.617a10.135 10.135 0 0 1 2.109 5.359zM10.668 9.594a1.564 1.564 0 0 0-2.095-1.472 1.52 1.52 0 0 0-.895 1.964 1.502 1.502 0 0 0 1.391.966 1.545 1.545 0 0 0 1.598-1.46v.002zm8.15-1.566a1.567 1.567 0 0 0-1.528 1.543 1.528 1.528 0 0 0 1.571 1.492 1.52 1.52 0 0 0 1.375-2.117 1.518 1.518 0 0 0-1.415-.919l-.003.001z"></path><path fill="currentColor" d="M33.914 32.137c-1.075-.478-2.062-1.196-3.11-1.306-1.049-.11-2.145.494-3.24.605a10.821 10.821 0 0 1-8.781-2.864c-4.682-4.33-4.013-10.97 1.403-14.518 4.811-3.154 11.874-2.102 15.268 2.273a8.671 8.671 0 0 1-1.002 12.095c-1.046.929-1.422 1.693-.751 2.917.102.257.174.525.213.798zM21.68 20.292a1.264 1.264 0 1 0 .01-2.528 1.264 1.264 0 0 0-.01 2.528zm7.887-2.526a1.266 1.266 0 0 0-1.256 1.21 1.247 1.247 0 1 0 1.256-1.21z"></path></svg>
</a></li>
</ul>
</div>
<div class="privacy-policy">
<div class="copyright">
<p>© Copyright The Linux Foundation. The PyTorch Foundation is a project of The Linux Foundation.
For web site terms of use, trademark policy and other policies applicable to The PyTorch Foundation please see
<a href="https://www.linuxfoundation.org/legal/policies/">Linux Foundation Policies</a>. The PyTorch Foundation supports the PyTorch open source
project, which has been established as PyTorch Project a Series of LF Projects, LLC. For policies applicable to the PyTorch Project a Series of LF Projects, LLC,
please see <a href="https://www.lfprojects.org/policies/">LF Projects, LLC Policies</a>. <a href="https://www.linuxfoundation.org/privacy">Privacy Policy</a> and <a href="https://www.linuxfoundation.org/terms">Terms of Use</a>.</p>
</div>
</div>
</div>
</footer>
<div class="mobile-main-menu">
<div class="container-fluid">
<div class="container">
<div class="mobile-main-menu-header-container">
<a class="header-logo" href="https://pytorch.org" aria-label="PyTorch"></a>
<a class="main-menu-close-button" href="#" data-behavior="close-mobile-menu"></a>
</div>
</div>
</div>
<div class="mobile-main-menu-links-container">
<div class="main-menu">
<ul>
<li class="navSearchWrapper reactNavSearchWrapper tabletSearchWrapper" key="search">
<div class="mobile-search-border">
<input
id="mobile-search-input"
type="text"
title="Search"
/>
<div id="mobile-search-icon"></div>
</div>
</li>
<li class="resources-mobile-menu-title">
<a>Learn</a>
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="/get-started">Get Started</a>
</li>
<li>
<a href="https://pytorch.org/tutorials">Tutorials</a>
</li>
<li>
<a href="https://pytorch.org/tutorials/beginner/basics/intro.html">Learn the Basics</a>
</li>
<li>
<a href="https://pytorch.org/tutorials/recipes/recipes_index.html">PyTorch Recipes</a>
</li>
<li>
<a href="https://pytorch.org/tutorials/beginner/introyt.html">Introduction to PyTorch - YouTube Series</a>
</li>
<li>
<a href="/new">New to PyTorch Foundation</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
<a>Ecosystem</a>
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="https://landscape.pytorch.org/">Tools</a>
</li>
<li>
<a href="/join-ecosystem">Join the Ecosystem</a>
</li>
<li>
<a href="/#community-module">Community</a>
</li>
<li>
<a href="https://discuss.pytorch.org">Forums</a>
</li>
<li>
<a href="/resources">Developer Resources</a>
</li>
<li>
<a href="/ecosystem/contributor-awards-2024">Contributor Awards - 2024</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
<a>Edge</a>
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="/edge">About PyTorch Edge</a>
</li>
<li>
<a href="/executorch-overview">ExecuTorch</a>
</li>
<li>
<a href="https://pytorch.org/executorch/stable/index.html">ExecuTorch Documentation</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
<a>Docs</a>
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="https://pytorch.org/docs">PyTorch</a>
</li>
<li>
<a href="/pytorch-domains">PyTorch Domains</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
<a>Blog & News</a>
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="/blog">PyTorch Blog</a>
</li>
<li>
<a href="/community-blog">Community Blog</a>
</li>
<li>
<a href="/videos">Videos</a>
</li>
<li>
<a href="/community-stories">Community Stories</a>
</li>
<li>
<a href="/events">Events</a>
</li>
<li>
<a href="/newsletter">Newsletter</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
<a>About</a>
</li>
<ul class="resources-mobile-menu-items">
<li>
<a href="/foundation">PyTorch Foundation</a>
</li>
<li>
<a href="/governing-board">Governing Board</a>
</li>
<li>
<a href="/credits">Cloud Credit Program</a>
</li>
<li>
<a href="/tac">Technical Advisory Council</a>
</li>
<li>
<a href="/staff">Staff</a>
</li>
<li>
<a href="/contact-us">Contact Us</a>
</li>
</ul>
<li class="resources-mobile-menu-title">
<a href="/join">Become a Member</a>
</li>
<li class="resources-mobile-menu-title">
<a href="https://github.com/pytorch/pytorch" title="Go to PyTorch GitHub"><div id="topnav-gh-icon"></div></a>
</li>
</ul>
</div>
</div>
</div>
<script src="/assets/mobile-menu.js"></script>
<script src="/assets/scroll-to-anchor.js"></script>
<script src="/assets/external-links-new-tab.js"></script>
<script src="/assets/search-bar.js"></script>
<script src="/assets/cookie-banner.js"></script>
<script type="text/javascript">
mobileMenu.bind();
anchors.add('.pytorch-article h2, .pytorch-article h3, .pytorch-article h4, .pytorch-article h5');
// Add class to links that have code blocks, since we cannot create links in code blocks
$("a code.highlighter-rouge").each(function(e) {
$(this).closest("a").addClass("has-code");
});
scrollToAnchor.bind();
var hasStaticHeader = $(".blog-header, .blog-detail-header, .resources-header, .get-started-header, .features-header, .ecosystem-header, .hub-header, .mobile-header, .announcement-header, .comm-stories-header").length > 0;
if (!hasStaticHeader) {
$(window).on("scroll", function() {
var top = $(this).scrollTop();
var fullPosition = $(".main-background").height() - $(".header-holder").height();
if (top <= 40) {
$(".header-holder").css({"backgroundColor": "rgba(0, 0, 0, 0.165)"});
} else if (top >= fullPosition) {
$(".header-holder").css({"backgroundColor": "#000000"});
} else {
var bgColor = "rgba(0, 0, 0, " + top / fullPosition + ")";
$(".header-holder").css({"backgroundColor": bgColor});
}
});
}
</script>
<script src="/assets/track-events.js"></script>
<script>trackEvents.bind();</script>
<div class="cookie-banner-wrapper">
<div class="container">
<p class="gdpr-notice">To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: <a href="https://www.facebook.com/policies/cookies/">Cookies Policy</a>.</p>
<img class="close-button" src="/assets/images/pytorch-x.svg">
</div>
</div>
</body>
</html>