This pages lists various PyTorch examples that you can use to learn and experiment with PyTorch.
.. panels:: Image Classification Using ConvNets ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ This example demonstrates how to run image classification with `Convolutional Neural Networks ConvNets <https://cs231n.github.io/convolutional-networks/>`__ on the `MNIST <https://en.wikipedia.org/wiki/MNIST_database>`__ database. `GO TO EXAMPLE <https://github.com/pytorch/examples/blob/main/mnist>`__ :opticon:`link-external` --- Measuring Similarity using Siamese Network ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ This example demonstrates how to measure similarity between two images using `Siamese network <https://en.wikipedia.org/wiki/Siamese_neural_network>`__ on the `MNIST <https://en.wikipedia.org/wiki/MNIST_database>`__ database. `GO TO EXAMPLE <https://github.com/pytorch/examples/blob/main/siamese_network>`__ :opticon:`link-external` --- Word-level Language Modeling using RNN and Transformer ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ This example demonstrates how to train a multi-layer `recurrent neural network (RNN) <https://en.wikipedia.org/wiki/Recurrent_neural_network>`__, such as Elman, GRU, or LSTM, or Transformer on a language modeling task by using the Wikitext-2 dataset. `GO TO EXAMPLE <https://github.com/pytorch/examples/blob/main/word_language_model>`__ :opticon:`link-external` --- Training ImageNet Classifiers ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ This example demonstrates how you can train some of the most popular model architectures, including `ResNet <https://en.wikipedia.org/wiki/Residual_neural_network>`__, `AlexNet <https://en.wikipedia.org/wiki/AlexNet>`__, and `VGG <https://arxiv.org/pdf/1409.1556.pdf>`__ on the `ImageNet <https://image-net.org/>`__ dataset. `GO TO EXAMPLE <https://github.com/pytorch/examples/blob/main/imagenet>`__ :opticon:`link-external` --- Generative Adversarial Networks (DCGAN) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ This example implements the `Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks <https://arxiv.org/abs/1511.06434>`__ paper. `GO TO EXAMPLE <https://github.com/pytorch/examples/blob/main/dcgan>`__ :opticon:`link-external` --- Variational Auto-Encoders ^^^^^^^^^^^^^^^^^^^^^^^^^ This example implements the `Auto-Encoding Variational Bayes <https://arxiv.org/abs/1312.6114>`__ paper with `ReLUs <https://en.wikipedia.org/wiki/Rectifier_(neural_networks)>`__ and the Adam optimizer. `GO TO EXAMPLE <https://github.com/pytorch/examples/blob/main/vae>`__ :opticon:`link-external` --- Super-resolution Using an Efficient Sub-Pixel CNN ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ This example demonstrates how to use the sub-pixel convolution layer described in `Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158>`__ paper. This example trains a super-resolution network on the `BSD300 dataset <https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/>`__. `GO TO EXAMPLE <https://github.com/pytorch/examples/blob/main/super_resolution>`__ :opticon:`link-external` --- HOGWILD! Training of Shared ConvNets ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ `HOGWILD! <https://arxiv.org/abs/1106.5730>`__ is a scheme that allows Stochastic Gradient Descent (SGD) parallelization without memory locking. This example demonstrates how to perform HOGWILD! training of shared ConvNets on MNIST. `GO TO EXAMPLE <https://github.com/pytorch/examples/blob/main/mnist_hogwild>`__ :opticon:`link-external` --- Training a CartPole to balance in OpenAI Gym with actor-critic ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ This reinforcement learning tutorial demonstrates how to train a CartPole to balance in the `OpenAI Gym <https://gym.openai.com/>`__ toolkit by using the `Actor-Critic <https://proceedings.neurips.cc/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf>`__ method. `GO TO EXAMPLE <https://github.com/pytorch/examples/blob/main/reinforcement_learning>`__ :opticon:`link-external` --- Time Sequence Prediction ^^^^^^^^^^^^^^^^^^^^^^^^ This beginner example demonstrates how to use LSTMCell to learn sine wave signals to predict the signal values in the future. `GO TO EXAMPLE <https://github.com/pytorch/examples/tree/main/time_sequence_prediction>`__ :opticon:`link-external` --- Implement the Neural Style Transfer algorithm on images ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ This tutorial demonstrates how you can use PyTorch's implementation of the `Neural Style Transfer (NST) <https://en.wikipedia.org/wiki/Neural_style_transfer>`__ algorithm on images. `GO TO EXAMPLE <https://github.com/pytorch/examples/blob/main/fast_neural_style>`__ :opticon:`link-external` --- PyTorch Module Transformations using fx ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ This set of examples demonstrates the torch.fx toolkit. For more information about `torch.fx`, see `torch.fx Overview <https://pytorch.org/docs/master/fx.html>`__. `GO TO EXAMPLE <https://github.com/pytorch/examples/blob/main/fx>`__ :opticon:`link-external` --- Distributed PyTorch ^^^^^^^^^^^^^^^^^^^ This set of examples demonstrates `Distributed Data Parallel (DDP) <https://pytorch.org/tutorials/intermediate/ddp_tutorial.html>`__ and `Distributed RPC framework <https://pytorch.org/docs/stable/rpc.html>`__. Includes the code used in the `DDP tutorial series <https://pytorch.org/tutorials/beginner/ddp_series_intro.html>`__. `GO TO EXAMPLES <https://github.com/pytorch/examples/tree/main/distributed>`__ :opticon:`link-external` --- C++ Frontend ^^^^^^^^^^^^ The PyTorch C++ frontend is a C++14 library for CPU and GPU tensor computation. This set of examples includes a linear regression, autograd, image recognition (MNIST), and other useful examples using PyTorch C++ frontend. `GO TO EXAMPLES <https://github.com/pytorch/examples/tree/main/cpp>`__ :opticon:`link-external` --- Image Classification Using Forward-Forward Algorithm ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ This example implements the paper `The Forward-Forward Algorithm: Some Preliminary Investigations <https://arxiv.org/pdf/2212.13345.pdf>`__ by Geoffrey Hinton. on the `MNIST <https://en.wikipedia.org/wiki/MNIST_database>`__ database. It is an introductory example to the Forward-Forward algorithm. `GO TO EXAMPLE <https://github.com/pytorch/examples/tree/main/mnist_forward_forward>`__ :opticon:`link-external` --- Graph Convolutional Network ^^^^^^^^^^^^^^^^^^^^^^^^^^^ This example implements the `Semi-Supervised Classification with Graph Convolutional Networks <https://arxiv.org/pdf/1609.02907.pdf>`__ paper on the CORA database. `GO TO EXAMPLE <https://github.com/pytorch/examples/blob/main/gcn>`__ :opticon:`link-external`