-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathref_cursor.py
129 lines (115 loc) · 4 KB
/
ref_cursor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# -----------------------------------------------------------------------------
# Copyright (c) 2018, 2023, Oracle and/or its affiliates.
#
# This software is dual-licensed to you under the Universal Permissive License
# (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl and Apache License
# 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose
# either license.
#
# If you elect to accept the software under the Apache License, Version 2.0,
# the following applies:
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# ref_cursor.py
#
# Demonstrates the use of REF CURSORS.
# -----------------------------------------------------------------------------
import time
import oracledb
import sample_env
# determine whether to use python-oracledb thin mode or thick mode
if not sample_env.get_is_thin():
oracledb.init_oracle_client(lib_dir=sample_env.get_oracle_client())
connection = oracledb.connect(
user=sample_env.get_main_user(),
password=sample_env.get_main_password(),
dsn=sample_env.get_connect_string(),
)
with connection.cursor() as cursor:
ref_cursor = connection.cursor()
cursor.callproc("myrefcursorproc", (2, 6, ref_cursor))
print("Rows between 2 and 6:")
for row in ref_cursor:
print(row)
print()
ref_cursor = connection.cursor()
cursor.callproc("myrefcursorproc", (8, 9, ref_cursor))
print("Rows between 8 and 9:")
for row in ref_cursor:
print(row)
print()
# -------------------------------------------------------------------------
# Setting prefetchrows and arraysize of a REF CURSOR can improve
# performance when fetching a large number of rows by reducing network
# round-trips.
# -------------------------------------------------------------------------
# Truncate the table used for this demo
cursor.execute("truncate table TestTempTable")
# Populate the table with a large number of rows
num_rows = 50000
sql = "insert into TestTempTable (IntCol) values (:1)"
data = [(n + 1,) for n in range(num_rows)]
cursor.executemany(sql, data)
# Perform an untuned fetch
ref_cursor = connection.cursor()
print(
"ref_cursor.prefetchrows =",
ref_cursor.prefetchrows,
"ref_cursor.arraysize =",
ref_cursor.arraysize,
)
start = time.time()
sum_rows = 0
cursor.callproc("myrefcursorproc2", [ref_cursor])
for row in ref_cursor:
sum_rows += row[0]
elapsed = time.time() - start
print(
"Sum of IntCol for",
num_rows,
"rows is ",
sum_rows,
"in",
elapsed,
"seconds",
)
print()
# Repeat the call but increase the internal arraysize and prefetch row
# buffers for the REF CURSOR to tune the number of round-trips to the
# database
ref_cursor = connection.cursor()
ref_cursor.prefetchrows = 1000
ref_cursor.arraysize = 1000
print(
"ref_cursor.prefetchrows =",
ref_cursor.prefetchrows,
"ref_cursor.arraysize =",
ref_cursor.arraysize,
)
start = time.time()
sum_rows = 0
cursor.callproc("myrefcursorproc2", [ref_cursor])
for row in ref_cursor:
sum_rows += row[0]
elapsed = time.time() - start
print(
"Sum of IntCol for",
num_rows,
"rows is ",
sum_rows,
"in",
elapsed,
"seconds",
)