-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathquery_arraysize_async.py
128 lines (104 loc) · 4.17 KB
/
query_arraysize_async.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# -----------------------------------------------------------------------------
# Copyright (c) 2023, Oracle and/or its affiliates.
#
# This software is dual-licensed to you under the Universal Permissive License
# (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl and Apache License
# 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose
# either license.
#
# If you elect to accept the software under the Apache License, Version 2.0,
# the following applies:
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# query_arraysize_async.py
#
# An asynchronous version of query_arraysize.py
#
# Demonstrates how to alter the arraysize and prefetchrows values in order to
# tune the performance of fetching data from the database. Increasing these
# values can reduce the number of network round trips and overhead required to
# fetch all of the rows from a large table. The value affect internal buffers
# and do not affect how, or when, rows are returned to your application.
#
# The best values need to be determined by tuning in your production
# environment.
# -----------------------------------------------------------------------------
import asyncio
import time
import oracledb
import sample_env
async def main():
connection = await oracledb.connect_async(
user=sample_env.get_main_user(),
password=sample_env.get_main_password(),
dsn=sample_env.get_connect_string(),
)
# Global values can be set to override the defaults used when a cursor is
# created
#
# oracledb.defaults.prefetchrows = 200 # default is 2
# oracledb.defaults.arraysize = 200 # default is 100
with connection.cursor() as cursor:
# Scenario 1: Selecting from a "large" table
start = time.time()
# Tune arraysize for your memory, network, and performance
# requirements. Generally leave prefetchrows at its default of 2.
cursor.arraysize = 1000
await cursor.execute("select * from bigtab")
res = await cursor.fetchall()
elapsed = time.time() - start
print(
"Prefetchrows:",
cursor.prefetchrows,
"Arraysize:",
cursor.arraysize,
)
print("Retrieved", len(res), "rows in", elapsed, "seconds")
# Scenario 2: Selecting a "page" of data
PAGE_SIZE = 20 # number of rows to fetch from the table
start = time.time()
# Set prefetchrows one larger than arraysize
# to remove an extra round-trip
cursor.arraysize = PAGE_SIZE
cursor.prefetchrows = PAGE_SIZE + 1
await cursor.execute(
"select * from bigtab offset 0 rows fetch next :r rows only",
[PAGE_SIZE],
)
res = await cursor.fetchall()
elapsed = time.time() - start
print(
"Prefetchrows:",
cursor.prefetchrows,
"Arraysize:",
cursor.arraysize,
)
print("Retrieved", len(res), "rows in", elapsed, "seconds")
# Scenario 3: Selecting one row of data is similar to the previous
# example
start = time.time()
cursor.arraysize = 1
cursor.prefetchrows = 2
await cursor.execute("select * from bigtab where rownum < 2")
res = await cursor.fetchall()
elapsed = time.time() - start
print(
"Prefetchrows:",
cursor.prefetchrows,
"Arraysize:",
cursor.arraysize,
)
print("Retrieved", len(res), "row in", elapsed, "seconds")
asyncio.run(main())