-
Notifications
You must be signed in to change notification settings - Fork 5.8k
/
Copy pathmempointer.hpp
890 lines (820 loc) · 35.1 KB
/
mempointer.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
/*
* Copyright (c) 2024, 2025, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_OPTO_MEMPOINTER_HPP
#define SHARE_OPTO_MEMPOINTER_HPP
#include "opto/memnode.hpp"
#include "opto/noOverflowInt.hpp"
// The MemPointer is a shared facility to parse pointers and check the aliasing of pointers.
//
// A MemPointer points to a region in memory, starting at a "pointer", and extending for "size" bytes:
// [pointer, pointer + size)
//
// We can check if two loads / two stores:
// - are adjacent -> pack multiple memops into a single memop
// - never overlap -> independent, can swap order
//
// Other use-cases:
// - alignment -> find an alignment solution for all memops in a vectorized loop
// - detect partial overlap -> indicates store-to-load-forwarding failures
//
// -----------------------------------------------------------------------------------------
//
// Intuition and Examples:
// We parse / decompose pointers into a linear form:
//
// pointer = SUM(scale_i * variable_i) + con
//
// where SUM() adds all "scale_i * variable_i" for each i together.
//
// The con and scale_i are compile-time constants (NoOverflowInt), and the variable_i are
// compile-time variables (C2 nodes).
//
// For the MemPointer, we do not explicitly track the base address. For Java heap pointers, the
// base address is just a variable in a summand with scale == 1. For native memory (C heap)
// pointers, the base address is null, and is hence implicitly a zero constant.
//
//
// Example 1: byte array access:
//
// array[i]
//
// pointer = array_base + ARRAY_BYTE_BASE_OFFSET + 1 * i
// = 1 * array_base + ARRAY_BYTE_BASE_OFFSET + 1 * i
// -------------------- ---------------------- --------------------
// = scale_0 * variable_0 + con + scale_1 * variable_1
//
//
// Example 2: int array access
//
// array[5 + i + 3 * j]
//
// pointer = array_base + ARRAY_INT_BASE_OFFSET + 4 * 5 + 4 * i + 4 * 3 * j
// = 1 * array_base + ARRAY_INT_BASE_OFFSET + 20 + 4 * i + 12 * j
// -------------------- ----------------------------- -------------------- --------------------
// = scale_0 * variable_0 + con + scale_1 * variable_1 + scale_2 * variable_2
//
//
// Example 3: Unsafe with int array
//
// UNSAFE.getInt(array, ARRAY_INT_BASE_OFFSET + 4 * i);
//
// pointer = array_base + ARRAY_INT_BASE_OFFSET + 4 * i
// = 1 * array_base + ARRAY_INT_BASE_OFFSET + 4 * i
// -------------------- --------------------- --------------------
// = scale_0 * variable_0 + con + scale_1 * variable_1
//
//
// Example 4: Unsafe with native memory address
//
// long address;
// UNSAFE.getInt(null, address + 4 * i);
//
// pointer = address + 4 * i
// = 1 * address + 0 + 4 * i
// -------------------- --- --------------------
// = scale_0 * variable_0 + con + scale_1 * variable_1
//
//
// Example 5: MemorySegment with byte array as backing type
//
// byte[] array = new byte[1000];
// MemorySegment ms = MemorySegment.ofArray(array);
// assert ms.heapBase().get() == array: "array is base";
// assert ms.address() == 0: "zero offset from base";
// byte val = ms.get(ValueLayout.JAVA_BYTE, i);
//
// pointer = ms.heapBase() + ARRAY_BYTE_BASE_OFFSET + ms.address() + i
// = 1 * array_base + ARRAY_BYTE_BASE_OFFSET + 0 + 1 * i
// ----------------------- ------------------------------------- --------------------
// = scale_0 * variable_0 + con + scale_1 * variable_1
//
//
// Example 6: MemorySegment with native memory
//
// MemorySegment ms = Arena.ofAuto().allocate(1000, 1);
// assert ms.heapBase().isEmpty(): "null base";
// assert ms.address() != 0: "non-zero native memory address";
// short val = ms.get(ValueLayout.JAVA_SHORT, 2L * i);
//
// pointer = ms.heapBase() + ms.address() + 2 i
// = 0 + 1 * ms.address() + 2 * i
// ------------ ---------------------- --------------------
// = con scale_0 * variable_0 + scale_1 * variable_1
//
//
// Example 7: Non-linear access to int array
//
// array[5 + i + j * k]
//
// pointer = array_base + ARRAY_INT_BASE_OFFSET + 4 * 5 + 4 * i + 4 * j * k
// = 1 * array_base + ARRAY_INT_BASE_OFFSET + 20 + 4 * i + 4 * j * k
// -------------------- ----------------------------- -------------------- --------------------
// = scale_0 * variable_0 + con + scale_1 * variable_1 + scale_2 * variable_2
//
// Note: we simply stop parsing once a term is not linear. We keep "j * k" as its own variable.
//
//
// Example 8: Unsafe with native memory address, non-linear access
//
// UNSAFE.getInt(null, i * j);
//
// pointer = i * j
// = 0 + 1 * i * j
// --- --------------------
// = con + scale_0 * variable_0
//
// Note: we can always parse a pointer into its trivial linear form:
//
// pointer = 0 + 1 * pointer.
//
// -----------------------------------------------------------------------------------------
//
// MemPointer:
// When the pointer is parsed, it is decomposed into a SUM of summands plus a constant:
//
// pointer = SUM(summands) + con
//
// Where each summand_i in summands has the form:
//
// summand_i = scale_i * variable_i
//
// Hence, the full decomposed form is:
//
// pointer = SUM(scale_i * variable_i) + con
//
// Note: the scale_i are compile-time constants (NoOverflowInt), and the variable_i are
// compile-time variables (C2 nodes).
// On 64-bit systems, this decomposed form is computed with long-add/mul, on 32-bit systems
// it is computed with int-add/mul.
//
// Any pointer can be parsed into this (default / trivial) decomposed form:
//
// pointer = 1 * pointer + 0
// scale_0 * variable_0 + con
//
// However, this is not particularly useful to compute aliasing. We would like to decompose
// the pointer as far as possible, i.e. extract as many summands and add up the constants to
// a single constant.
//
// Example (normal int-array access):
// pointer1 = array[i + 0] = array_base + array_int_base_offset + 4L * ConvI2L(i + 0)
// pointer2 = array[i + 1] = array_base + array_int_base_offset + 4L * ConvI2L(i + 1)
//
// At first, computing the aliasing is not immediately straight-forward in the general case because
// the distance is hidden inside the ConvI2L. We can convert this (with array_int_base_offset = 16)
// into these decomposed forms:
//
// pointer1 = 1L * array_base + 4L * i + 16L
// pointer2 = 1L * array_base + 4L * i + 20L
//
// This allows us to easily see that these two pointers are adjacent (distance = 4).
//
// Hence, in MemPointerParser::parse, we start with the pointer as a trivial summand. A summand can either
// be decomposed further or it is terminal (cannot be decomposed further). We decompose the summands
// recursively until all remaining summands are terminal, see MemPointerParser::parse_sub_expression.
// This effectively parses the pointer expression recursively.
//
// MemPointerAliasing:
// The decomposed form allows us to determine the aliasing between two pointers easily. For
// example, if two pointers are identical, except for their constant:
//
// pointer1 = SUM(summands) + con1
// pointer2 = SUM(summands) + con2
//
// then we can easily compute the distance between the pointers (distance = con2 - con1),
// and determine if they are adjacent.
//
// MemPointer::Base
// The MemPointer is decomposed like this:
// pointer = SUM(summands) + con
//
// This is sufficient for simple adjacency checks and we do not need to know if the pointer references
// native (off-heap) or object (heap) memory. However, in some cases it is necessary or useful to know
// the object base, or the native pointer's base.
//
// - Object (heap) base (MemPointer::base().is_object()):
// Is the base of the Java object, which resides on the Java heap.
// Guarantees:
// - Always has an alignment of ObjectAlignmentInBytes.
// - A MemPointer with a given object base always must point into the memory of that object. Thus,
// if we have two pointers with two different bases at runtime, we know the two pointers do not
// alias.
//
// - Native (off-heap) base (MemPointer::base().is_native()):
// When we decompose a pointer to native memory, it is at first not clear that there is a base address.
// Even if we could know that there is some base address to which we add index offsets, we cannot know
// if this reference address points to the beginning of a native memory allocation or into the middle,
// or outside it. We also have no guarantee for alignment with such a base address.
//
// Still: we would like to find such a base if possible, and if two pointers are similar (i.e. have the
// same summands), we would like to find the same base. Further, it is reasonable to speculatively
// assume that such base addresses are aligned. We performs such a speculative alignment runtime check
// in VTransform::add_speculative_alignment_check.
//
// A base pointer must have scale = 1, and be accepted byMemPointer::is_native_memory_base_candidate.
// It can thus be one of these:
// (1) CastX2P
// This is simply some arbitrary long cast to a pointer. It may be computed as an addition of
// multiple long and even int values. In some cases this means that we could have further
// decomposed the CastX2P, but at that point it is even harder to tell what should be a good
// candidate for a native memory base.
// (2) LoadL from field jdk.internal.foreign.NativeMemorySegmentImpl.min
// This would be preferable over CastX2P, because it holds the address() of a native
// MemorySegment, i.e. we know it points to the beginning of that MemorySegment.
//
// -----------------------------------------------------------------------------------------
//
// We have to be careful on 64-bit systems with ConvI2L: decomposing its input is not
// correct in general, overflows may not be preserved in the decomposed form:
//
// AddI: ConvI2L(a + b) != ConvI2L(a) + ConvI2L(b)
// SubI: ConvI2L(a - b) != ConvI2L(a) - ConvI2L(b)
// MulI: ConvI2L(a * conI) != ConvI2L(a) * ConvI2L(conI)
// LShiftI: ConvI2L(a << conI) != ConvI2L(a) << ConvI2L(conI)
//
// If we want to prove the correctness of MemPointerAliasing, we need some guarantees,
// that the MemPointers adequately represent the underlying pointers, such that we can
// compute the aliasing based on the summands and constants.
//
// -----------------------------------------------------------------------------------------
//
// Below, we will formulate a "MemPointer Lemma" that helps us to prove the correctness of
// the MemPointerAliasing computations. To prove the "MemPointer Lemma", we need to define
// the idea of a "safe decomposition", and then prove that all the decompositions we apply
// are such "safe decompositions".
//
//
// Definition: Safe decomposition
// Trivial decomposition:
// (SAFE0) The trivial decomposition from p to mp_0 = 0 + 1 * p is always safe.
//
// Non-trivial decomposition:
// We decompose summand in:
// mp_i = con + summand + SUM(other_summands)
// resulting in: +-------------------------+
// mp_{i+1} = con + dec_con + SUM(dec_summands) + SUM(other_summands)
// = new_con + SUM(new_summands)
// where mp_i means that the original pointer p was decomposed i times.
//
// We call a non-trivial decomposition safe if either:
// (SAFE1) No matter the values of the summand variables:
// mp_i = mp_{i+1}
//
// (SAFE2) The pointer is on an array with a known array_element_size_in_bytes,
// and there is an integer x, such that:
// mp_i = mp_{i+1} + x * array_element_size_in_bytes * 2^32
//
// Note: if "x = 0", we have "mp1 = mp2", and if "x != 0", then mp1 and mp2
// have a distance at least twice as large as the array size, and so
// at least one of mp1 or mp2 must be out of bounds of the array.
//
// MemPointer Lemma:
// Given two pointers p1 and p2, and their respective MemPointers mp1 and mp2.
// If these conditions hold:
// (S0) mp1 and mp2 are constructed only with safe decompositions (SAFE0, SAFE1, SAFE2)
// from p1 and p2, respectively.
// (S1) Both p1 and p2 are within the bounds of the same memory object.
// (S2) The constants do not differ too much: abs(mp1.con - mp2.con) < 2^31.
// (S3) All summands of mp1 and mp2 are identical (i.e. only the constants are possibly different).
//
// then the pointer difference between p1 and p2 is identical to the difference between
// mp1 and mp2:
// p1 - p2 = mp1 - mp2
//
// Note: MemPointer::get_aliasing_with relies on this MemPointer Lemma to prove the correctness of its
// aliasing computation between two MemPointers.
//
//
// Note: MemPointerParser::is_safe_to_decompose_op checks that all decompositions we apply are safe.
//
//
// Proof of the "MemPointer Lemma":
// Assume (S0-S3) and show that
// p1 - p2 = mp1 - mp2
//
// We make a case distinction over the types of decompositions used in the construction of mp1 and mp2.
//
// Trivial Case: Only trivial (SAFE0) decompositions were used:
// mp1 = 0 + 1 * p1 = p1
// mp2 = 0 + 1 * p2 = p2
// =>
// p1 - p2 = mp1 - mp2
//
// Unsafe Case: We apply at least one unsafe decomposition:
// This is a contradiction to (S0) and we are done.
//
// Case 1: Only decomposition of type (SAFE0) and (SAFE1) are used:
// We make an induction proof over the decompositions from p1 to mp1, starting with
// the trivial decomposition (SAFE0):
// mp1_0 = 0 + 1 * p1 = p1
// Then for the i-th non-trivial decomposition (SAFE1) we know that
// mp1_i = mp1_{i+1}
// and hence, after the n-th non-trivial decomposition from p1:
// p1 = mp1_0 = mp1_i = mp1_n = mp1
// Analogously, we can prove:
// p2 = mp2
//
// p1 = mp1
// p2 = mp2
// =>
// p1 - p2 = mp1 - mp2
//
// Case 2: At least one decomposition of type (SAFE2) and no unsafe decomposition is used.
// Given we have (SAFE2) decompositions, we know that we are operating on an array of
// known array_element_size_in_bytes. We can weaken the guarantees from (SAFE1)
// decompositions to the same guarantee as (SAFE2) decompositions. Hence all applied
// non-trivial decompositions satisfy:
// mp1_i = mp1_{i+1} + x1_i * array_element_size_in_bytes * 2^32
// where x1_i = 0 for (SAFE1) decompositions.
//
// We make an induction proof over the decompositions from p1 to mp1, starting with
// the trivial decomposition (SAFE0):
// mp1_0 = 0 + 1 * p1 = p1
// Then for the i-th non-trivial decomposition (SAFE1) or (SAFE2), we know that
// mp1_i = mp1_{i+1} + x1_i * array_element_size_in_bytes * 2^32
// and hence, if mp1 was decomposed with n non-trivial decompositions (SAFE1) or (SAFE2) from p1:
// p1 = mp1 + x1 * array_element_size_in_bytes * 2^32
// where
// x1 = SUM(x1_i)
// Analogously, we can prove:
// p2 = mp2 + x2 * array_element_size_in_bytes * 2^32
//
// And hence, with x = x1 - x2 we have:
// p1 - p2 = mp1 - mp2 + x * array_element_size_in_bytes * 2^32
//
// If "x = 0", then it follows:
// p1 - p2 = mp1 - mp2
//
// If "x != 0", then:
// abs(p1 - p2) = abs(mp1 - mp2 + x * array_element_size_in_bytes * 2^32)
// >= abs(x * array_element_size_in_bytes * 2^32) - abs(mp1 - mp2)
// -- apply x != 0 --
// >= array_element_size_in_bytes * 2^32 - abs(mp1 - mp2)
// -- apply (S3) --
// = array_element_size_in_bytes * 2^32 - abs(mp1.con - mp2.con)
// -- apply (S2) --
// > array_element_size_in_bytes * 2^32 - 2^31
// -- apply array_element_size_in_bytes > 0 --
// >= array_element_size_in_bytes * 2^31
// >= max_possible_array_size_in_bytes
// >= array_size_in_bytes
//
// This shows that p1 and p2 have a distance greater than the array size, and hence at least one of the two
// pointers must be out of bounds. This contradicts our assumption (S1) and we are done.
#ifndef PRODUCT
class TraceMemPointer : public StackObj {
private:
const bool _is_trace_parsing;
const bool _is_trace_aliasing;
const bool _is_trace_adjacency;
const bool _is_trace_overlap;
public:
TraceMemPointer(const bool is_trace_parsing,
const bool is_trace_aliasing,
const bool is_trace_adjacency,
const bool is_trace_overlap) :
_is_trace_parsing( is_trace_parsing),
_is_trace_aliasing( is_trace_aliasing),
_is_trace_adjacency(is_trace_adjacency),
_is_trace_overlap(is_trace_overlap)
{}
bool is_trace_parsing() const { return _is_trace_parsing; }
bool is_trace_aliasing() const { return _is_trace_aliasing; }
bool is_trace_adjacency() const { return _is_trace_adjacency; }
bool is_trace_overlap() const { return _is_trace_overlap; }
};
#endif
// Class to represent aliasing between two MemPointer.
class MemPointerAliasing {
private:
enum Aliasing {
Unknown, // Distance unknown.
// Example: two "int[]" (unknown if the same) with different variable index offsets:
// e.g. "array[i] vs array[j]".
// e.g. "array1[i] vs array2[j]".
AlwaysAtDistance, // Constant distance = p2 - p1.
// Example: The same address expression, except for a constant offset:
// e.g. "array[i] vs array[i+1]".
NotOrAtDistance}; // At compile-time, we know that at run-time it is either of these:
// (1) Not: The pointers belong to different memory objects. Distance unknown.
// (2) AtConstDistance: distance = p2 - p1.
// Example: two "int[]" (unknown if the same) with indices that only differ by a
// constant offset:
// e.g. "array1[i] vs array2[i+4]":
// if "array1 == array2": distance = 4.
// if "array1 != array2": different memory objects.
const Aliasing _aliasing;
const jint _distance;
MemPointerAliasing(const Aliasing aliasing, const jint distance) :
_aliasing(aliasing),
_distance(distance)
{
assert(_distance != min_jint, "given by condition (S3) of MemPointer Lemma");
}
public:
static MemPointerAliasing make_unknown() {
return MemPointerAliasing(Unknown, 0);
}
static MemPointerAliasing make_always_at_distance(const jint distance) {
return MemPointerAliasing(AlwaysAtDistance, distance);
}
static MemPointerAliasing make_not_or_at_distance(const jint distance) {
return MemPointerAliasing(NotOrAtDistance, distance);
}
// Use case: exact aliasing and adjacency.
bool is_always_at_distance(const jint distance) const {
return _aliasing == AlwaysAtDistance && _distance == distance;
}
// Use case: overlap.
// Note: the bounds are exclusive: lo < element < hi
bool is_never_in_distance_range(const jint distance_lo, const jint distance_hi) const {
return (_aliasing == AlwaysAtDistance || _aliasing == NotOrAtDistance) &&
(_distance <= distance_lo || distance_hi <= _distance);
}
#ifndef PRODUCT
void print_on(outputStream* st) const {
switch(_aliasing) {
case Unknown: st->print("Unknown"); break;
case AlwaysAtDistance: st->print("AlwaysAtDistance(%d)", _distance); break;
case NotOrAtDistance: st->print("NotOrAtDistance(%d)", _distance); break;
default: ShouldNotReachHere();
}
}
#endif
};
// Summand of a MemPointer:
//
// summand = scale * variable
//
// where variable is a C2 node.
class MemPointerSummand : public StackObj {
private:
Node* _variable;
NoOverflowInt _scale;
public:
MemPointerSummand() :
_variable(nullptr),
_scale(NoOverflowInt::make_NaN()) {}
MemPointerSummand(Node* variable, const NoOverflowInt& scale) :
_variable(variable),
_scale(scale)
{
assert(_variable != nullptr, "must have variable");
assert(!_scale.is_zero(), "non-zero scale");
}
Node* variable() const { return _variable; }
NoOverflowInt scale() const { return _scale; }
static int cmp_by_variable_idx(MemPointerSummand* p1, MemPointerSummand* p2) {
return cmp_by_variable_idx(*p1, *p2);
}
static int cmp_by_variable_idx(const MemPointerSummand& p1, const MemPointerSummand& p2) {
if (p1.variable() == nullptr) {
return (p2.variable() == nullptr) ? 0 : 1;
}
if (p2.variable() == nullptr) {
return -1;
}
return p1.variable()->_idx - p2.variable()->_idx;
}
static int cmp(const MemPointerSummand& p1, const MemPointerSummand& p2) {
int cmp = cmp_by_variable_idx(p1, p2);
if (cmp != 0) { return cmp; }
return NoOverflowInt::cmp(p1.scale(), p2.scale());
}
friend bool operator==(const MemPointerSummand a, const MemPointerSummand b) {
// Both "null" -> equal.
if (a.variable() == nullptr && b.variable() == nullptr) { return true; }
// Same variable and scale?
if (a.variable() != b.variable()) { return false; }
return a.scale() == b.scale();
}
friend bool operator!=(const MemPointerSummand a, const MemPointerSummand b) {
return !(a == b);
}
#ifndef PRODUCT
void print_on(outputStream* st) const {
_scale.print_on(st);
tty->print(" * [%d %s]", _variable->_idx, _variable->Name());
}
#endif
};
// Parsing calls the callback on every decomposed node. These are all the
// nodes on the paths from the pointer to the summand variables, i.e. the
// "inner" nodes of the pointer expression. This callback is for example
// used in SuperWord::unrolling_analysis to collect all inner nodes of a
// pointer expression.
class MemPointerParserCallback : public StackObj {
private:
static MemPointerParserCallback _empty;
public:
virtual void callback(Node* n) { /* do nothing by default */ }
// Singleton for default arguments.
static MemPointerParserCallback& empty() { return _empty; }
};
// A MemPointer points to a region in memory, starting at a "pointer", and extending
// for "size" bytes:
//
// [pointer, pointer + size)
//
// Where the "pointer" is decomposed into the following form:
//
// pointer = SUM(summands) + con
// pointer = SUM(scale_i * variable_i) + con
//
// Where SUM() adds all "scale_i * variable_i" for each i together.
//
// Note: if the base is known, then it is in the 0th summand. A base can be:
// - on-heap / object: base().object()
// - off-heap / native: base().native()
//
// pointer = scale_0 * variable_0 + scale_1 * scale_1 + ... + con
// pointer = 1 * base + scale_1 * scale_1 + ... + con
//
class MemPointer : public StackObj {
public:
// We limit the number of summands to 10. This is just a best guess, and not at this
// point supported by evidence. But I think it is reasonable: usually, a pointer
// contains a base pointer (e.g. array pointer or null for native memory) and a few
// variables. It should be rare that we have more than 9 variables.
static const int SUMMANDS_SIZE = 10;
// A base can be:
// - Known:
// - On-heap: Object
// - Off-heap: Native
// - Unknown
class Base : public StackObj {
private:
enum Kind { Unknown, Object, Native };
Kind _kind;
Node* _base;
Base(Kind kind, Node* base) : _kind(kind), _base(base) {
assert((kind == Unknown) == (base == nullptr), "known base");
}
public:
Base() : Base(Unknown, nullptr) {}
static Base make(Node* pointer, const GrowableArray<MemPointerSummand>& summands);
bool is_known() const { return _kind != Unknown; }
bool is_object() const { return _kind == Object; }
bool is_native() const { return _kind == Native; }
Node* object() const { assert(is_object(), "unexpected kind"); return _base; }
Node* native() const { assert(is_native(), "unexpected kind"); return _base; }
Node* object_or_native() const { assert(is_known(), "unexpected kind"); return _base; }
Node* object_or_native_or_null() const { return _base; }
#ifndef PRODUCT
void print_on(outputStream* st) const {
switch (_kind) {
case Object:
st->print("object ");
st->print("%d %s", _base->_idx, _base->Name());
break;
case Native:
st->print("native ");
st->print("%d %s", _base->_idx, _base->Name());
break;
default:
st->print("unknown ");
};
}
#endif
private:
static Node* find_base(Node* object_base, const GrowableArray<MemPointerSummand>& summands);
};
private:
MemPointerSummand _summands[SUMMANDS_SIZE];
const NoOverflowInt _con;
const Base _base;
const jint _size;
NOT_PRODUCT( const TraceMemPointer& _trace; )
// Default / trivial: pointer = 0 + 1 * pointer
MemPointer(Node* pointer,
const jint size
NOT_PRODUCT(COMMA const TraceMemPointer& trace)) :
_con(NoOverflowInt(0)),
_base(Base()),
_size(size)
NOT_PRODUCT(COMMA _trace(trace))
{
assert(pointer != nullptr, "pointer must be non-null");
_summands[0] = MemPointerSummand(pointer, NoOverflowInt(1));
assert(1 <= _size && _size <= 2048 && is_power_of_2(_size), "sanity: no vector is expected to be larger");
}
// pointer = SUM(SUMMANDS) + con
MemPointer(Node* pointer,
const GrowableArray<MemPointerSummand>& summands,
const NoOverflowInt& con,
const jint size
NOT_PRODUCT(COMMA const TraceMemPointer& trace)) :
_con(con),
_base(Base::make(pointer, summands)),
_size(size)
NOT_PRODUCT(COMMA _trace(trace))
{
assert(!_con.is_NaN(), "non-NaN constant");
assert(summands.length() <= SUMMANDS_SIZE, "summands must fit");
#ifdef ASSERT
for (int i = 0; i < summands.length(); i++) {
const MemPointerSummand& s = summands.at(i);
assert(s.variable() != nullptr, "variable cannot be null");
assert(!s.scale().is_NaN(), "non-NaN scale");
}
#endif
// Put the base in the 0th summand.
Node* base = _base.object_or_native_or_null();
int pos = 0;
if (base != nullptr) {
MemPointerSummand b(base, NoOverflowInt(1));
_summands[0] = b;
pos++;
}
// Put all other summands afterward.
for (int i = 0; i < summands.length(); i++) {
const MemPointerSummand& s = summands.at(i);
if (s.variable() == base && s.scale().is_one()) { continue; }
_summands[pos++] = summands.at(i);
}
assert(pos == summands.length(), "copied all summands");
assert(1 <= _size && _size <= 2048 && is_power_of_2(_size), "sanity: no vector is expected to be larger");
}
// Mutated copy.
// The new MemPointer is identical, except it has a different size and con.
MemPointer(const MemPointer& old,
const NoOverflowInt new_con,
const jint new_size) :
_con(new_con),
_base(old.base()),
_size(new_size)
NOT_PRODUCT(COMMA _trace(old._trace))
{
assert(!_con.is_NaN(), "non-NaN constant");
for (int i = 0; i < SUMMANDS_SIZE; i++) {
_summands[i] = old.summands_at(i);
}
}
public:
// Parse pointer of MemNode. Delegates to MemPointerParser::parse.
// callback: receives a callback for every decomposed (inner) node
// of the pointer expression.
MemPointer(const MemNode* mem,
MemPointerParserCallback& callback
NOT_PRODUCT(COMMA const TraceMemPointer& trace));
// Parse pointer of MemNode. Delegates to MemPointerParser::parse.
MemPointer(const MemNode* mem
NOT_PRODUCT(COMMA const TraceMemPointer& trace)) :
MemPointer(mem, MemPointerParserCallback::empty() NOT_PRODUCT(COMMA trace)) {}
static MemPointer make_trivial(Node* pointer,
const jint size
NOT_PRODUCT(COMMA const TraceMemPointer& trace)) {
return MemPointer(pointer, size NOT_PRODUCT(COMMA trace));
}
static MemPointer make(Node* pointer,
const GrowableArray<MemPointerSummand>& summands,
const NoOverflowInt& con,
const jint size
NOT_PRODUCT(COMMA const TraceMemPointer& trace)) {
if (summands.length() <= SUMMANDS_SIZE) {
return MemPointer(pointer, summands, con, size NOT_PRODUCT(COMMA trace));
} else {
return MemPointer::make_trivial(pointer, size NOT_PRODUCT(COMMA trace));
}
}
MemPointer make_with_size(const jint new_size) const {
return MemPointer(*this, this->con(), new_size);
};
MemPointer make_with_con(const NoOverflowInt new_con) const {
return MemPointer(*this, new_con, this->size());
};
private:
MemPointerAliasing get_aliasing_with(const MemPointer& other
NOT_PRODUCT(COMMA const TraceMemPointer& trace)) const;
bool has_same_summands_as(const MemPointer& other, uint start) const;
bool has_same_summands_as(const MemPointer& other) const { return has_same_summands_as(other, 0); }
bool has_different_object_base_but_otherwise_same_summands_as(const MemPointer& other) const;
public:
bool has_same_non_base_summands_as(const MemPointer& other) const {
if (!base().is_known() || !other.base().is_known()) {
assert(false, "unknown base case is not answered optimally");
return false;
}
// Known base at 0th summand: all other summands are non-base summands.
return has_same_summands_as(other, 1);
}
const MemPointerSummand& summands_at(const uint i) const {
assert(i < SUMMANDS_SIZE, "in bounds");
return _summands[i];
}
const NoOverflowInt con() const { return _con; }
const Base& base() const { return _base; }
jint size() const { return _size; }
static int cmp_summands(const MemPointer& a, const MemPointer& b) {
for (int i = 0; i < SUMMANDS_SIZE; i++) {
const MemPointerSummand& s_a = a.summands_at(i);
const MemPointerSummand& s_b = b.summands_at(i);
int cmp = MemPointerSummand::cmp(s_a, s_b);
if (cmp != 0) { return cmp;}
}
return 0;
}
template<typename Callback>
void for_each_non_empty_summand(Callback callback) const {
for (int i = 0; i < SUMMANDS_SIZE; i++) {
const MemPointerSummand& s = summands_at(i);
if (s.variable() != nullptr) {
callback(s);
}
}
}
bool is_adjacent_to_and_before(const MemPointer& other) const;
bool never_overlaps_with(const MemPointer& other) const;
#ifndef PRODUCT
void print_form_on(outputStream* st) const {
if (_con.is_NaN()) {
st->print_cr("empty");
return;
}
_con.print_on(st);
for (int i = 0; i < SUMMANDS_SIZE; i++) {
const MemPointerSummand& summand = _summands[i];
if (summand.variable() != nullptr) {
st->print(" + ");
summand.print_on(st);
}
}
}
void print_on(outputStream* st, bool end_with_cr = true) const {
st->print("MemPointer[size: %2d, base: ", size());
_base.print_on(st);
st->print(", form: ");
print_form_on(st);
st->print("]");
if (end_with_cr) { st->cr(); }
}
#endif
};
// Utility class.
// MemPointerParser::parse takes a MemNode (load or store) and computes its MemPointer.
// It temporarily allocates dynamic data structures (GrowableArray) in the resource
// area. This way, the computed MemPointer does not have to have any dynamic data
// structures and can be copied freely by value.
class MemPointerParser : public StackObj {
private:
const MemNode* _mem;
// Internal data-structures for parsing.
NoOverflowInt _con;
GrowableArray<MemPointerSummand> _worklist;
GrowableArray<MemPointerSummand> _summands;
// Resulting decomposed-form.
MemPointer _mem_pointer;
MemPointerParser(const MemNode* mem,
MemPointerParserCallback& callback
NOT_PRODUCT(COMMA const TraceMemPointer& trace)) :
_mem(mem),
_con(NoOverflowInt(0)),
_mem_pointer(parse(callback NOT_PRODUCT(COMMA trace))) {}
public:
static MemPointer parse(const MemNode* mem,
MemPointerParserCallback& callback
NOT_PRODUCT(COMMA const TraceMemPointer& trace)) {
assert(mem->is_Store() || mem->is_Load(), "only stores and loads are allowed");
ResourceMark rm;
MemPointerParser parser(mem, callback NOT_PRODUCT(COMMA trace));
#ifndef PRODUCT
if (trace.is_trace_parsing()) {
tty->print_cr("\nMemPointerParser::parse:");
tty->print(" mem: "); mem->dump();
parser.mem_pointer().print_on(tty);
mem->in(MemNode::Address)->dump_bfs(7, nullptr, "d");
}
#endif
return parser.mem_pointer();
}
static bool is_native_memory_base_candidate(Node* n);
private:
const MemPointer& mem_pointer() const { return _mem_pointer; }
MemPointer parse(MemPointerParserCallback& callback
NOT_PRODUCT(COMMA const TraceMemPointer& trace));
void parse_sub_expression(const MemPointerSummand& summand, MemPointerParserCallback& callback);
static bool sub_expression_has_native_base_candidate(Node* n);
bool is_safe_to_decompose_op(const int opc, const NoOverflowInt& scale) const;
};
#endif // SHARE_OPTO_MEMPOINTER_HPP