forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_931.java
52 lines (51 loc) · 1.81 KB
/
_931.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
package com.fishercoder.solutions;
/**
* 931. Minimum Falling Path Sum
*
* Given a square array of integers A, we want the minimum sum of a falling path through A.
* A falling path starts at any element in the first row, and chooses one element from each row.
* The next row's choice must be in a column that is different from the previous row's column by at most one.
*
* Example 1:
* Input: [[1,2,3],[4,5,6],[7,8,9]]
* Output: 12
* Explanation:
* The possible falling paths are:
* [1,4,7], [1,4,8], [1,5,7], [1,5,8], [1,5,9]
* [2,4,7], [2,4,8], [2,5,7], [2,5,8], [2,5,9], [2,6,8], [2,6,9]
* [3,5,7], [3,5,8], [3,5,9], [3,6,8], [3,6,9]
* The falling path with the smallest sum is [1,4,7], so the answer is 12.
*
* Note:
* 1 <= A.length == A[0].length <= 100
* -100 <= A[i][j] <= 100
* */
public class _931 {
public static class Solution1 {
public int minFallingPathSum(int[][] A) {
int size = A.length;
int[][] dp = new int[size][size];
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
if (i == 0) {
dp[i][j] = A[i][j];
} else {
int lastRow = dp[i - 1][j];
if (j - 1 >= 0) {
lastRow = Math.min(dp[i - 1][j - 1], lastRow);
}
if (j + 1 < size) {
lastRow = Math.min(dp[i - 1][j + 1], lastRow);
}
dp[i][j] = lastRow + A[i][j];
}
}
}
int minSum = Integer.MAX_VALUE;
for (int i = 0; i < size; i++) {
minSum = Math.min(minSum, dp[size - 1][i]);
}
return minSum;
}
}
}