forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_1388.java
70 lines (68 loc) · 2.45 KB
/
_1388.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
package com.fishercoder.solutions;
import java.util.Arrays;
/**
* 1388. Pizza With 3n Slices
*
* There is a pizza with 3n slices of varying size, you and your friends will take slices of pizza as follows:
* You will pick any pizza slice.
* Your friend Alice will pick next slice in anti clockwise direction of your pick.
* Your friend Bob will pick next slice in clockwise direction of your pick.
* Repeat until there are no more slices of pizzas.
* Sizes of Pizza slices is represented by circular array slices in clockwise direction.
*
* Return the maximum possible sum of slice sizes which you can have.
*
* Example 1:
* Input: slices = [1,2,3,4,5,6]
* Output: 10
* Explanation: Pick pizza slice of size 4, Alice and Bob will pick slices with size 3 and 5 respectively. Then Pick slices with size 6, finally Alice and Bob will pick slice of size 2 and 1 respectively. Total = 4 + 6.
*
* Example 2:
* Input: slices = [8,9,8,6,1,1]
* Output: 16
* Output: Pick pizza slice of size 8 in each turn. If you pick slice with size 9 your partners will pick slices of size 8.
*
* Example 3:
* Input: slices = [4,1,2,5,8,3,1,9,7]
* Output: 21
*
* Example 4:
* Input: slices = [3,1,2]
* Output: 3
*
* Constraints:
* 1 <= slices.length <= 500
* slices.length % 3 == 0
* 1 <= slices[i] <= 1000
* */
public class _1388 {
public static class Solution1 {
public int maxSizeSlices(int[] slices) {
int n = slices.length;
int[] b = Arrays.copyOf(slices, 2 * n);
for (int i = 0; i < n; i++) {
b[i + n] = slices[i];
}
int[][] dp = new int[2 * n][2 * n];
for (int len = 3; len <= n; len += 3) {
for (int i = 0; i + len - 1 < 2 * n; i++) {
int j = i + len - 1;
for (int k = i + 3; k <= j - 2; k += 3) {
dp[i][j] = Math.max(dp[i][j], dp[i][k - 1] + dp[k][j]);
}
for (int k = i + 1; k < j; k += 3) {
dp[i][j] = Math.max(dp[i][j],
(i + 1 <= k - 1 ? dp[i + 1][k - 1] : 0)
+ b[k] + (k + 1 <= j - 1 ? dp[k + 1][j - 1] : 0)
);
}
}
}
int ans = 0;
for (int i = 0; i < n; i++) {
ans = Math.max(ans, dp[i][i + n - 1]);
}
return ans;
}
}
}