forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_1354.java
67 lines (65 loc) · 2.21 KB
/
_1354.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
package com.fishercoder.solutions;
import java.util.Collections;
import java.util.PriorityQueue;
/**
* 1354. Construct Target Array With Multiple Sums
*
* Given an array of integers target. From a starting array, A consisting of all 1's, you may perform the following procedure :
* let x be the sum of all elements currently in your array.
* choose index i, such that 0 <= i < target.size and set the value of A at index i to x.
* You may repeat this procedure as many times as needed.
* Return True if it is possible to construct the target array from A otherwise return False.
*
* Example 1:
* Input: target = [9,3,5]
* Output: true
* Explanation: Start with [1, 1, 1]
* [1, 1, 1], sum = 3 choose index 1
* [1, 3, 1], sum = 5 choose index 2
* [1, 3, 5], sum = 9 choose index 0
* [9, 3, 5] Done
*
* Example 2:
* Input: target = [1,1,1,2]
* Output: false
* Explanation: Impossible to create target array from [1,1,1,1].
*
* Example 3:
* Input: target = [8,5]
* Output: true
*
* Constraints:
* N == target.length
* 1 <= target.length <= 5 * 10^4
* 1 <= target[i] <= 10^9
* */
public class _1354 {
public static class Solution1 {
/**
* 1. A good idea/trick to calculate the previous value of the largest number max: (2 * max - total).
* 2. Use a PriorityQueue to store the elements in reverse order to help us get the largest element in O(1) time
* 3. Also keep a variable of total sum
*
* reference: https://leetcode.com/problems/construct-target-array-with-multiple-sums/discuss/510214/C%2B%2B-Reaching-Points-Work-Backwards
*/
public boolean isPossible(int[] target) {
PriorityQueue<Long> pq = new PriorityQueue<>(Collections.reverseOrder());
long sum = 0L;
for (int v : target) {
sum += v;
pq.offer((long) v);
}
while (sum > pq.size()) {
long max = pq.poll();
Long prev = 2 * max - sum;
if (prev < 1) {
return false;
}
pq.offer(prev);
sum -= max;
sum += prev;
}
return sum == pq.size();
}
}
}