-
Notifications
You must be signed in to change notification settings - Fork 92
/
Copy pathcky.py
269 lines (233 loc) · 9.1 KB
/
cky.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import torch
from .helpers import _Struct, Chart
A, B = 0, 1
class CKY(_Struct):
def logpartition(self, scores, lengths=None, force_grad=False):
semiring = self.semiring
# Checks
terms, rules, roots = scores
rules.requires_grad_(True)
ssize = semiring.size()
batch, N, T = terms.shape
_, NT, _, _ = rules.shape
S = NT + T
terms, rules, roots = (
semiring.convert(terms).requires_grad_(True),
semiring.convert(rules).requires_grad_(True),
semiring.convert(roots).requires_grad_(True),
)
if lengths is None:
lengths = torch.LongTensor([N] * batch).to(terms.device)
# Charts
beta = [Chart((batch, N, N, NT), rules, semiring) for _ in range(2)]
span = [None for _ in range(N)]
v = (ssize, batch)
term_use = terms + 0.0
# Split into NT/T groups
NTs = slice(0, NT)
Ts = slice(NT, S)
rules = rules.view(ssize, batch, 1, NT, S, S)
def arr(a, b):
return rules[..., a, b].contiguous().view(*v + (NT, -1)).transpose(-2, -1)
matmul = semiring.matmul
times = semiring.times
X_Y_Z = arr(NTs, NTs)
X_Y1_Z = arr(Ts, NTs)
X_Y_Z1 = arr(NTs, Ts)
X_Y1_Z1 = arr(Ts, Ts)
for w in range(1, N):
all_span = []
v2 = v + (N - w, -1)
Y = beta[A][: N - w, :w, :]
Z = beta[B][w:, N - w :, :]
X1 = matmul(matmul(Y.transpose(-2, -1), Z).view(*v2), X_Y_Z)
all_span.append(X1)
Y_term = term_use[..., : N - w, :, None]
Z_term = term_use[..., w:, None, :]
Y = Y[..., -1, :].unsqueeze(-1)
X2 = matmul(times(Y, Z_term).view(*v2), X_Y_Z1)
Z = Z[..., 0, :].unsqueeze(-2)
X3 = matmul(times(Y_term, Z).view(*v2), X_Y1_Z)
all_span += [X2, X3]
if w == 1:
X4 = matmul(times(Y_term, Z_term).view(*v2), X_Y1_Z1)
all_span.append(X4)
span[w] = semiring.sum(torch.stack(all_span, dim=-1))
beta[A][: N - w, w, :] = span[w]
beta[B][w:N, N - w - 1, :] = span[w]
final = beta[A][0, :, NTs]
top = torch.stack([final[:, i, l - 1] for i, l in enumerate(lengths)], dim=1)
log_Z = semiring.dot(top, roots)
return log_Z, (term_use, rules, roots, span[1:])
def marginals(self, scores, lengths=None, _autograd=True, _raw=False):
"""
Compute the marginals of a CFG using CKY.
Parameters:
scores : terms : b x n x T
rules : b x NT x (NT+T) x (NT+T)
root: b x NT
lengths : lengths in batch
Returns:
v: b tensor of total sum
spans: bxNxT terms, (bxNTx(NT+S)x(NT+S)) rules, bxNT roots
"""
terms, rules, roots = scores
batch, N, T = terms.shape
_, NT, _, _ = rules.shape
v, (term_use, rule_use, root_use, spans) = self.logpartition(
scores, lengths=lengths, force_grad=True
)
def marginal(obj, inputs):
obj = self.semiring.unconvert(obj).sum(dim=0)
marg = torch.autograd.grad(
obj,
inputs,
create_graph=True,
only_inputs=True,
allow_unused=False,
)
spans_marg = torch.zeros(
batch, N, N, NT, dtype=scores[1].dtype, device=scores[1].device
)
span_ls = marg[3:]
for w in range(len(span_ls)):
x = span_ls[w].sum(dim=0, keepdim=True)
spans_marg[:, w, : N - w - 1] = self.semiring.unconvert(x)
rule_marg = self.semiring.unconvert(marg[0]).squeeze(1)
root_marg = self.semiring.unconvert(marg[1])
term_marg = self.semiring.unconvert(marg[2])
assert term_marg.shape == (batch, N, T)
assert root_marg.shape == (batch, NT)
assert rule_marg.shape == (batch, NT, NT + T, NT + T)
return (term_marg, rule_marg, root_marg, spans_marg)
inputs = (rule_use, root_use, term_use) + tuple(spans)
if _raw:
paths = []
for k in range(v.shape[0]):
obj = v[k : k + 1]
marg = marginal(obj, inputs)
paths.append(marg[-1])
paths = torch.stack(paths, 0)
obj = v.sum(dim=0, keepdim=True)
term_marg, rule_marg, root_marg, _ = marginal(obj, inputs)
return term_marg, rule_marg, root_marg, paths
else:
return marginal(v, inputs)
def score(self, potentials, parts):
terms, rules, roots = potentials[:3]
m_term, m_rule, m_root = parts[:3]
b = m_term.shape[0]
return (
m_term.mul(terms).view(b, -1).sum(-1)
+ m_rule.mul(rules).view(b, -1).sum(-1)
+ m_root.mul(roots).view(b, -1).sum(-1)
)
@staticmethod
def to_parts(spans, extra, lengths=None):
NT, T = extra
batch, N, N, S = spans.shape
assert S == NT + T
terms = torch.zeros(batch, N, T)
rules = torch.zeros(batch, NT, S, S)
roots = torch.zeros(batch, NT)
for b in range(batch):
roots[b, :] = spans[b, 0, lengths[b] - 1, :NT]
terms[b, : lengths[b]] = spans[
b, torch.arange(lengths[b]), torch.arange(lengths[b]), NT:
]
cover = spans[b].nonzero()
left = {i: [] for i in range(N)}
right = {i: [] for i in range(N)}
for i in range(cover.shape[0]):
i, j, A = cover[i].tolist()
left[i].append((A, j, j - i + 1))
right[j].append((A, i, j - i + 1))
for i in range(cover.shape[0]):
i, j, A = cover[i].tolist()
B = None
for B_p, k, a_span in left[i]:
for C_p, k_2, b_span in right[j]:
if k_2 == k + 1 and a_span + b_span == j - i + 1:
B, C = B_p, C_p
break
if j > i:
assert B is not None, "%s" % ((i, j, left[i], right[j], cover),)
rules[b, A, B, C] += 1
return terms, rules, roots
@staticmethod
def from_parts(chart):
terms, rules, roots = chart
batch, N, N, NT, S, S = rules.shape
assert terms.shape[1] == N
spans = torch.zeros(batch, N, N, S, dtype=rules.dtype, device=rules.device)
rules = rules.sum(dim=-1).sum(dim=-1)
for n in range(N):
spans[:, torch.arange(N - n - 1), torch.arange(n + 1, N), :NT] = rules[
:, n, torch.arange(N - n - 1)
]
spans[:, torch.arange(N), torch.arange(N), NT:] = terms
return spans, (NT, S - NT)
@staticmethod
def _intermediary(spans):
batch, N = spans.shape[:2]
splits = {}
cover = spans.nonzero()
left, right = {}, {}
for k in range(cover.shape[0]):
b, i, j, A = cover[k].tolist()
left.setdefault((b, i), [])
right.setdefault((b, j), [])
left[b, i].append((A, j, j - i + 1))
right[b, j].append((A, i, j - i + 1))
for x in range(cover.shape[0]):
b, i, j, A = cover[x].tolist()
if i == j:
continue
b_final = None
c_final = None
k_final = None
for B_p, k, a_span in left.get((b, i), []):
if k > j:
continue
for C_p, k_2, b_span in right.get((b, j), []):
if k_2 == k + 1 and a_span + b_span == j - i + 1:
k_final = k
b_final = B_p
c_final = C_p
break
if b_final is not None:
break
assert k_final is not None, "%s %s %s %s" % (b, i, j, spans[b].nonzero())
splits[(b, i, j)] = k_final, b_final, c_final
return splits
@classmethod
def to_networkx(cls, spans):
cur = 0
N = spans.shape[1]
n_nodes = int(spans.sum().item())
cover = spans.nonzero().cpu()
order = torch.argsort(cover[:, 2] - cover[:, 1])
left = {}
right = {}
ordered = cover[order]
label = ordered[:, 3]
a = []
b = []
topo = [[] for _ in range(N)]
for n in ordered:
batch, i, j, _ = n.tolist()
# G.add_node(cur, label=A)
if i - j != 0:
a.append(left[(batch, i)][0])
a.append(right[(batch, j)][0])
b.append(cur)
b.append(cur)
order = max(left[(batch, i)][1], right[(batch, j)][1]) + 1
else:
order = 0
left[(batch, i)] = (cur, order)
right[(batch, j)] = (cur, order)
topo[order].append(cur)
cur += 1
indices = left
return (n_nodes, a, b, label), indices, topo