-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathargs.go
651 lines (631 loc) · 22.1 KB
/
args.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
// Copyright 2018 The go-python Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Argument parsing for Go functions called by python
//
// These functions are useful when creating your own extensions
// functions and methods. Additional information and examples are
// available in Extending and Embedding the Python Interpreter.
//
// The first three of these functions described, PyArg_ParseTuple(),
// PyArg_ParseTupleAndKeywords(), and PyArg_Parse(), all use format
// strings which are used to tell the function about the expected
// arguments. The format strings use the same syntax for each of these
// functions.
//
// Parsing arguments
//
// A format string consists of zero or more “format units.” A format
// unit describes one Python object; it is usually a single character
// or a parenthesized sequence of format units. With a few exceptions,
// a format unit that is not a parenthesized sequence normally
// corresponds to a single address argument to these functions. In the
// following description, the quoted form is the format unit; the
// entry in (round) parentheses is the Python object type that matches
// the format unit; and the entry in [square] brackets is the type of
// the C variable(s) whose address should be passed.
//
// s (str) [const char *]
//
// Convert a Unicode object to a C pointer to a character string. A
// pointer to an existing string is stored in the character pointer
// variable whose address you pass. The C string is
// NUL-terminated. The Python string must not contain embedded NUL
// bytes; if it does, a TypeError exception is raised. Unicode objects
// are converted to C strings using 'utf-8' encoding. If this
// conversion fails, a UnicodeError is raised.
//
// Note This format does not accept bytes-like objects. If you want to
// accept filesystem paths and convert them to C character strings, it
// is preferable to use the O& format with PyUnicode_FSConverter() as
// converter.
//
// s* (str, bytes, bytearray or buffer compatible object) [Py_buffer]
//
// This format accepts Unicode objects as well as bytes-like
// objects. It fills a Py_buffer structure provided by the caller. In
// this case the resulting C string may contain embedded NUL
// bytes. Unicode objects are converted to C strings using 'utf-8'
// encoding.
//
// s# (str, bytes or read-only buffer compatible object) [const char *, int or Py_ssize_t]
//
// Like s*, except that it doesn’t accept mutable buffer-like objects
// such as bytearray. The result is stored into two C variables, the
// first one a pointer to a C string, the second one its length. The
// string may contain embedded null bytes. Unicode objects are
// converted to C strings using 'utf-8' encoding.
//
// z (str or None) [const char *]
//
// Like s, but the Python object may also be None, in which case the C
// pointer is set to NULL.
//
// z* (str, bytes, bytearray, buffer compatible object or None)
// [Py_buffer]
//
// Like s*, but the Python object may also be None, in which case the
// buf member of the Py_buffer structure is set to NULL.
//
// z# (str, bytes, read-only buffer compatible object or None) [const
// char *, int]
//
// Like s#, but the Python object may also be None, in which case the
// C pointer is set to NULL.
//
// y (bytes) [const char *]
//
// This format converts a bytes-like object to a C pointer to a
// character string; it does not accept Unicode objects. The bytes
// buffer must not contain embedded NUL bytes; if it does, a TypeError
// exception is raised.
//
// y* (bytes, bytearray or bytes-like object) [Py_buffer]
//
// This variant on s* doesn’t accept Unicode objects, only bytes-like
// objects. This is the recommended way to accept binary data.
//
// y# (bytes) [const char *, int]
//
// This variant on s# doesn’t accept Unicode objects, only bytes-like
// objects.
//
// S (bytes) [PyBytesObject *]
//
// Requires that the Python object is a bytes object, without
// attempting any conversion. Raises TypeError if the object is not a
// bytes object. The C variable may also be declared as PyObject*.
//
// Y (bytearray) [PyByteArrayObject *]
//
// Requires that the Python object is a bytearray object, without
// attempting any conversion. Raises TypeError if the object is not a
// bytearray object. The C variable may also be declared as PyObject*.
//
// u (str) [Py_UNICODE *]
//
// Convert a Python Unicode object to a C pointer to a NUL-terminated
// buffer of Unicode characters. You must pass the address of a
// Py_UNICODE pointer variable, which will be filled with the pointer
// to an existing Unicode buffer. Please note that the width of a
// Py_UNICODE character depends on compilation options (it is either
// 16 or 32 bits). The Python string must not contain embedded NUL
// characters; if it does, a TypeError exception is raised.
//
// Note Since u doesn’t give you back the length of the string, and it
// may contain embedded NUL characters, it is recommended to use u# or
// U instead.
//
// u# (str) [Py_UNICODE *, int]
//
// This variant on u stores into two C variables, the first one a
// pointer to a Unicode data buffer, the second one its length.
//
// Z (str or None) [Py_UNICODE *]
//
// Like u, but the Python object may also be None, in which case the
// Py_UNICODE pointer is set to NULL.
//
// Z# (str or None) [Py_UNICODE *, int]
//
// Like u#, but the Python object may also be None, in which case the
// Py_UNICODE pointer is set to NULL.
//
// U (str) [PyObject *]
//
// Requires that the Python object is a Unicode object, without
// attempting any conversion. Raises TypeError if the object is not a
// Unicode object. The C variable may also be declared as PyObject*.
//
// w* (bytearray or read-write byte-oriented buffer) [Py_buffer]
//
// This format accepts any object which implements the read-write
// buffer interface. It fills a Py_buffer structure provided by the
// caller. The buffer may contain embedded null bytes. The caller have
// to call PyBuffer_Release() when it is done with the buffer.
//
// es (str) [const char *encoding, char **buffer]
//
// This variant on s is used for encoding Unicode into a character
// buffer. It only works for encoded data without embedded NUL bytes.
//
// This format requires two arguments. The first is only used as
// input, and must be a const char* which points to the name of an
// encoding as a NUL-terminated string, or NULL, in which case 'utf-8'
// encoding is used. An exception is raised if the named encoding is
// not known to Python. The second argument must be a char**; the
// value of the pointer it references will be set to a buffer with the
// contents of the argument text. The text will be encoded in the
// encoding specified by the first argument.
//
// PyArg_ParseTuple() will allocate a buffer of the needed size, copy
// the encoded data into this buffer and adjust *buffer to reference
// the newly allocated storage. The caller is responsible for calling
// PyMem_Free() to free the allocated buffer after use.
//
// et (str, bytes or bytearray) [const char *encoding, char **buffer]
//
// Same as es except that byte string objects are passed through
// without recoding them. Instead, the implementation assumes that the
// byte string object uses the encoding passed in as parameter.
//
// es# (str) [const char *encoding, char **buffer, int *buffer_length]
//
// This variant on s# is used for encoding Unicode into a character
// buffer. Unlike the es format, this variant allows input data which
// contains NUL characters.
//
// It requires three arguments. The first is only used as input, and
// must be a const char* which points to the name of an encoding as a
// NUL-terminated string, or NULL, in which case 'utf-8' encoding is
// used. An exception is raised if the named encoding is not known to
// Python. The second argument must be a char**; the value of the
// pointer it references will be set to a buffer with the contents of
// the argument text. The text will be encoded in the encoding
// specified by the first argument. The third argument must be a
// pointer to an integer; the referenced integer will be set to the
// number of bytes in the output buffer.
//
// There are two modes of operation:
//
// If *buffer points a NULL pointer, the function will allocate a
// buffer of the needed size, copy the encoded data into this buffer
// and set *buffer to reference the newly allocated storage. The
// caller is responsible for calling PyMem_Free() to free the
// allocated buffer after usage.
//
// If *buffer points to a non-NULL pointer (an already allocated
// buffer), PyArg_ParseTuple() will use this location as the buffer
// and interpret the initial value of *buffer_length as the buffer
// size. It will then copy the encoded data into the buffer and
// NUL-terminate it. If the buffer is not large enough, a ValueError
// will be set.
//
// In both cases, *buffer_length is set to the length of the encoded
// data without the trailing NUL byte.
//
// et# (str, bytes or bytearray) [const char *encoding, char **buffer,
// int *buffer_length]
//
// Same as es# except that byte string objects are passed through
// without recoding them. Instead, the implementation assumes that the
// byte string object uses the encoding passed in as parameter.
//
// Numbers
//
// b (int) [unsigned char]
//
// Convert a nonnegative Python integer to an unsigned tiny int,
// stored in a C unsigned char.
//
// B (int) [unsigned char]
//
// Convert a Python integer to a tiny int without overflow checking,
// stored in a C unsigned char. h (int) [short int]
//
// Convert a Python integer to a C short int.
//
// H (int) [unsigned short int]
//
// Convert a Python integer to a C unsigned short int, without
// overflow checking.
//
// i (int) [int]
//
// Convert a Python integer to a plain C int.
//
// I (int) [unsigned int]
//
// Convert a Python integer to a C unsigned int, without overflow
// checking.
//
// l (int) [long int]
//
// Convert a Python integer to a C long int.
//
// k (int) [unsigned long]
//
// Convert a Python integer to a C unsigned long without overflow
// checking.
//
// L (int) [PY_LONG_LONG]
//
// Convert a Python integer to a C long long. This format is only
// available on platforms that support long long (or _int64 on
// Windows).
//
// K (int) [unsigned PY_LONG_LONG]
//
// Convert a Python integer to a C unsigned long long without overflow
// checking. This format is only available on platforms that support
// unsigned long long (or unsigned _int64 on Windows).
//
// n (int) [Py_ssize_t]
//
// Convert a Python integer to a C Py_ssize_t.
//
// c (bytes or bytearray of length 1) [char]
//
// Convert a Python byte, represented as a bytes or bytearray object
// of length 1, to a C char.
//
// Changed in version 3.3: Allow bytearray objects.
//
// C (str of length 1) [int]
//
// Convert a Python character, represented as a str object of length 1, to a C int.
//
// f (float) [float]
//
// Convert a Python floating point number to a C float.
//
// d (float) [double]
//
// Convert a Python floating point number to a C double.
//
// D (complex) [Py_complex]
//
// Convert a Python complex number to a C Py_complex structure.
//
// Other objects
//
// O (object) [PyObject *]
//
// Store a Python object (without any conversion) in a C object
// pointer. The C program thus receives the actual object that was
// passed. The object’s reference count is not increased. The pointer
// stored is not NULL.
//
// O! (object) [typeobject, PyObject *]
//
// Store a Python object in a C object pointer. This is similar to O,
// but takes two C arguments: the first is the address of a Python
// type object, the second is the address of the C variable (of type
// PyObject*) into which the object pointer is stored. If the Python
// object does not have the required type, TypeError is raised.
//
// O& (object) [converter, anything]
//
// Convert a Python object to a C variable through a converter
// function. This takes two arguments: the first is a function, the
// second is the address of a C variable (of arbitrary type),
// converted to void *. The converter function in turn is called as
// follows:
//
// status = converter(object, address);
//
// where object is the Python object to be converted and address is
// the void* argument that was passed to the PyArg_Parse*()
// function. The returned status should be 1 for a successful
// conversion and 0 if the conversion has failed. When the conversion
// fails, the converter function should raise an exception and leave
// the content of address unmodified.
//
// If the converter returns Py_CLEANUP_SUPPORTED, it may get called a
// second time if the argument parsing eventually fails, giving the
// converter a chance to release any memory that it had already
// allocated. In this second call, the object parameter will be NULL;
// address will have the same value as in the original call.
//
// Changed in version 3.1: Py_CLEANUP_SUPPORTED was added.
//
// p (bool) [int]
//
// Tests the value passed in for truth (a boolean predicate) and
// converts the result to its equivalent C true/false integer
// value. Sets the int to 1 if the expression was true and 0 if it was
// false. This accepts any valid Python value. See Truth Value Testing
// for more information about how Python tests values for truth.
//
// New in version 3.3.
//
// (items) (tuple) [matching-items]
//
// The object must be a Python sequence whose length is the number of
// format units in items. The C arguments must correspond to the
// individual format units in items. Format units for sequences may be
// nested.
//
// It is possible to pass “long” integers (integers whose value
// exceeds the platform’s LONG_MAX) however no proper range checking
// is done — the most significant bits are silently truncated when the
// receiving field is too small to receive the value (actually, the
// semantics are inherited from downcasts in C — your mileage may
// vary).
//
// A few other characters have a meaning in a format string. These may
// not occur inside nested parentheses. They are:
//
// |
//
// Indicates that the remaining arguments in the Python argument list
// are optional. The C variables corresponding to optional arguments
// should be initialized to their default value — when an optional
// argument is not specified, PyArg_ParseTuple() does not touch the
// contents of the corresponding C variable(s).
//
// $
//
// PyArg_ParseTupleAndKeywords() only: Indicates that the remaining
// arguments in the Python argument list are keyword-only.
//
// New in version 3.3.
//
// :
//
// The list of format units ends here; the string after the colon is
// used as the function name in error messages (the “associated value”
// of the exception that PyArg_ParseTuple() raises).
//
// ;
//
// The list of format units ends here; the string after the semicolon
// is used as the error message instead of the default error
// message. : and ; mutually exclude each other.
//
// Note that any Python object references which are provided to the
// caller are borrowed references; do not decrement their reference
// count!
//
// Additional arguments passed to these functions must be addresses of
// variables whose type is determined by the format string; these are
// used to store values from the input tuple. There are a few cases,
// as described in the list of format units above, where these
// parameters are used as input values; they should match what is
// specified for the corresponding format unit in that case.
//
// For the conversion to succeed, the arg object must match the format
// and the format must be exhausted. On success, the PyArg_Parse*()
// functions return true, otherwise they return false and raise an
// appropriate exception. When the PyArg_Parse*() functions fail due
// to conversion failure in one of the format units, the variables at
// the addresses corresponding to that and the following format units
// are left untouched.
package py
// FIXME this would be a lot more useful if we could supply the
// address of a String rather than an Object - would then need
// introspection to set it properly
// ParseTupleAndKeywords
func ParseTupleAndKeywords(args Tuple, kwargs StringDict, format string, kwlist []string, results ...*Object) error {
if kwlist != nil && len(results) != len(kwlist) {
return ExceptionNewf(TypeError, "Internal error: supply the same number of results and kwlist")
}
var opsBuf [16]formatOp
min, name, kwOnly_i, ops := parseFormat(format, opsBuf[:0])
err := checkNumberOfArgs(name, len(args)+len(kwargs), len(results), min, len(ops))
if err != nil {
return err
}
// Check all the kwargs are in kwlist
// O(N^2) Slow but kwlist is usually short
for kwargName := range kwargs {
for _, kw := range kwlist {
if kw == kwargName {
goto found
}
}
return ExceptionNewf(TypeError, "%s() got an unexpected keyword argument '%s'", name, kwargName)
found:
}
// Walk through all the results we want
for i, op := range ops {
var (
arg Object
kw string
)
if i < len(kwlist) {
kw = kwlist[i]
arg = kwargs[kw]
}
// Consume ordered args first -- they should not require keyword only or also be specified via keyword
if i < len(args) {
if i >= kwOnly_i {
return ExceptionNewf(TypeError, "%s() specifies argument '%s' that is keyword only", name, kw)
}
if arg != nil {
return ExceptionNewf(TypeError, "%s() got multiple values for argument '%s'", name, kw)
}
arg = args[i]
}
// Unspecified args retain their default value
if arg == nil {
continue
}
result := results[i]
switch op.code {
case 'O':
*result = arg
case 'Z':
switch op.modifier {
default:
return ExceptionNewf(TypeError, "%s() argument %d must be str or None, not %s", name, i+1, arg.Type().Name)
case '#', 0:
switch arg := arg.(type) {
case String, NoneType:
default:
return ExceptionNewf(TypeError, "%s() argument %d must be str or None, not %s", name, i+1, arg.Type().Name)
}
}
*result = arg
case 'z':
switch op.modifier {
default:
switch arg := arg.(type) {
case String, NoneType:
// ok
default:
return ExceptionNewf(TypeError, "%s() argument %d must be str or None, not %s", name, i+1, arg.Type().Name)
}
case '#':
fallthrough // FIXME(sbinet): check for read-only?
case '*':
switch arg := arg.(type) {
case String, Bytes, NoneType:
// ok.
default:
return ExceptionNewf(TypeError, "%s() argument %d must be str, bytes-like or None, not %s", name, i+1, arg.Type().Name)
}
}
*result = arg
case 'U':
if _, ok := arg.(String); !ok {
return ExceptionNewf(TypeError, "%s() argument %d must be str, not %s", name, i+1, arg.Type().Name)
}
*result = arg
case 's':
switch op.modifier {
default:
if _, ok := arg.(String); !ok {
return ExceptionNewf(TypeError, "%s() argument %d must be str, not %s", name, i+1, arg.Type().Name)
}
case '#':
fallthrough // FIXME(sbinet): check for read-only?
case '*':
switch arg := arg.(type) {
case String, Bytes:
// ok.
default:
return ExceptionNewf(TypeError, "%s() argument %d must be str or bytes-like, not %s", name, i+1, arg.Type().Name)
}
}
*result = arg
case 'y':
switch op.modifier {
default:
if _, ok := arg.(Bytes); !ok {
return ExceptionNewf(TypeError, "%s() argument %d must be bytes-like, not %s", name, i+1, arg.Type().Name)
}
case '#':
fallthrough // FIXME(sbinet): check for read-only?
case '*':
switch arg := arg.(type) {
case Bytes:
// ok.
default:
return ExceptionNewf(TypeError, "%s() argument %d must be bytes-like, not %s", name, i+1, arg.Type().Name)
}
}
*result = arg
case 'i', 'n':
if _, ok := arg.(Int); !ok {
return ExceptionNewf(TypeError, "%s() argument %d must be int, not %s", name, i+1, arg.Type().Name)
}
*result = arg
case 'p':
if _, ok := arg.(Bool); !ok {
return ExceptionNewf(TypeError, "%s() argument %d must be bool, not %s", name, i+1, arg.Type().Name)
}
*result = arg
case 'd':
switch x := arg.(type) {
case Int:
*result = Float(x)
case Float:
*result = x
default:
return ExceptionNewf(TypeError, "%s() argument %d must be float, not %s", name, i+1, arg.Type().Name)
}
default:
return ExceptionNewf(TypeError, "Unknown/Unimplemented format character %q in ParseTupleAndKeywords called from %s", op, name)
}
}
return nil
}
// Parse tuple only
func ParseTuple(args Tuple, format string, results ...*Object) error {
return ParseTupleAndKeywords(args, nil, format, nil, results...)
}
type formatOp struct {
code byte
modifier byte
}
// Parse the format
func parseFormat(format string, in []formatOp) (min int, name string, kwOnly_i int, ops []formatOp) {
name = "function"
min = -1
kwOnly_i = 0xFFFF
ops = in[:0]
N := len(format)
for i := 0; i < N; {
op := formatOp{code: format[i]}
i++
if i < N {
if mod := format[i]; mod == '*' || mod == '#' {
op.modifier = mod
i++
}
}
switch op.code {
case ':', ';':
name = format[i:]
i = N
case '$':
kwOnly_i = len(ops)
case '|':
min = len(ops)
default:
ops = append(ops, op)
}
}
if min < 0 {
min = len(ops)
}
return
}
// Checks the number of args passed in
func checkNumberOfArgs(name string, nargs, nresults, min, max int) error {
if min == max {
if nargs != max {
return ExceptionNewf(TypeError, "%s() takes exactly %d arguments (%d given)", name, max, nargs)
}
} else {
if nargs > max {
return ExceptionNewf(TypeError, "%s() takes at most %d arguments (%d given)", name, max, nargs)
}
if nargs < min {
return ExceptionNewf(TypeError, "%s() takes at least %d arguments (%d given)", name, min, nargs)
}
}
if nargs > nresults {
return ExceptionNewf(TypeError, "Internal error: not enough arguments supplied to Unpack*/Parse*")
}
return nil
}
// Unpack the args tuple into the results
//
// Up to the caller to set default values
func UnpackTuple(args Tuple, kwargs StringDict, name string, min int, max int, results ...*Object) error {
if len(kwargs) != 0 {
return ExceptionNewf(TypeError, "%s() does not take keyword arguments", name)
}
// Check number of arguments
err := checkNumberOfArgs(name, len(args), len(results), min, max)
if err != nil {
return err
}
// Copy the results in
for i := range args {
*results[i] = args[i]
}
return nil
}