This repository was archived by the owner on Apr 11, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 398
/
Copy patherror_analysis.py
162 lines (135 loc) · 7.09 KB
/
error_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env python
"""
Usage:
error_analysis.py [options] MODEL_PATH (--standard-dataset | --method2code-dataset) DATA_PATH OUT_FILE
Options:
-h --help Show this screen.
--max-num-epochs EPOCHS The maximum number of epochs to run [default: 300]
--max-num-files INT Number of files to load.
--max-num-examples INT Randomly sample examples from the dataset to display.
--hypers-override HYPERS JSON dictionary overriding hyperparameter values.
--hypers-override-file FILE JSON file overriding hyperparameter values.
--test-batch-size SIZE The size of the batches in which to compute MRR. [default: 1000]
--distance-metric METRIC The distance metric to use [default: cosine]
--quiet Less output (not one per line per minibatch). [default: False]
--azure-info PATH Azure authentication information file (JSON). Used to load data from Azure storage.
--debug Enable debug routines. [default: False]
--standard-dataset The DATA_PATH is to a standard dataset.
--method2code-dataset The DATA_PATH is to a standard dataset but will be used for method2code tasks.
--language-to-analyze LANG The language to analyze. Defaults to all.
"""
import io
import json
from typing import List, Dict, Any, Optional
from tqdm import tqdm
from pygments import highlight
from pygments.lexers import get_lexer_by_name
from pygments.formatters import HtmlFormatter
from docopt import docopt
from dpu_utils.utils import run_and_debug, RichPath
import model_test
from model_test import expand_data_path, MrrSearchTester
from random import sample
## Default Bootstrap headers
HEADER=f"""
<!doctype html>
<html lang="en">
<head>
<!-- Required meta tags -->
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS -->
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css" integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO" crossorigin="anonymous">
<title>Error Analysis</title>
<style>
{HtmlFormatter().get_style_defs('.highlight')}
</style>
</head>
<body>
"""
FOOTER="""
</body></html>
"""
def to_highlighted_html(code:str, language: str) -> str:
lexer = get_lexer_by_name(language, stripall=True)
formatter = HtmlFormatter(linenos=True)
return highlight(code, lexer, formatter)
def generate_html_error_report(tester: MrrSearchTester,
data: List[Dict[str, Any]],
max_num_examples: Optional[int],
outfile: str,
filter_language: Optional[str] = None) -> None:
error_log = [] # type: List[MrrSearchTester.QueryResult]
# Sample the data if requested
data = sample_data(data=data,
max_num_examples=max_num_examples)
# generate error logs
tester.update_test_batch_size(max_num_examples)
tester.evaluate(data, 'Error Analysis Run', error_log, filter_language=filter_language)
"Generates HTML Report of Errors."
print('Generating Report')
with open(outfile, 'w') as f:
f.write(HEADER)
for query_result in tqdm(error_log, total=len(error_log)):
with io.StringIO() as sb:
target_code = data[query_result.target_idx]['code']
target_query = data[query_result.target_idx]['docstring'].replace('\n', ' ')
language = data[query_result.target_idx]['language']
sb.write(f'<h2> Query: "{target_query}"</h2>\n\n')
sb.write(f'<strong>Target Snippet</strong>\n{to_highlighted_html(target_code, language=language)}\n')
sb.write(f'Target snippet was ranked at position <strong>{query_result.target_rank}</strong>.\n')
sb.write('<div class="row">\n')
for pos, sample_idx in enumerate(query_result.top_ranked_idxs):
sb.write('<div class="col-sm">\n')
sb.write(f'<strong>Result at {pos+1}</strong>\n')
sb.write(f'{data[sample_idx]["repo"]} {data[sample_idx]["path"]}:{data[sample_idx]["lineno"]}\n')
result_docstring = data[sample_idx]['docstring']
result_code = data[sample_idx]['code']
lang = data[sample_idx]['language']
sb.write(f'<blockquote><p> Docstring: <em>{result_docstring}</em></blockquote>\n{to_highlighted_html(result_code, language=lang)}\n\n')
sb.write('</div>\n')
sb.write('</div>\n<hr/>\n')
f.write(sb.getvalue())
f.write(FOOTER)
def sample_data(data: List[Dict[str, Any]],
max_num_examples: Optional[int]) -> List[Dict[str, Any]]:
"""
Sample max_num_examples from the data.
Args:
data: List[Dict[str, Any]]
max_num_examples: either an int or if a string will attempt conversion to an int.
Returns:
data: List[Dict[str, Any]]
"""
if max_num_examples:
num_elements = min(len(data), max_num_examples)
print(f'Extracting {num_elements} random samples from dataset.')
data = sample(data, num_elements)
return data
def run(arguments):
max_num_examples = int(arguments.get('--max-num-examples')) if arguments.get('--max-num-examples') else None
azure_info_path = arguments.get('--azure-info', None)
test_data_dirs = expand_data_path(arguments['DATA_PATH'], azure_info_path)
if arguments['--hypers-override'] is not None:
hypers_override = json.loads(arguments['--hypers-override'])
elif arguments['--hypers-override-file'] is not None:
with open(arguments['--hypers-override-file']) as f:
hypers_override = json.load(f)
else:
hypers_override = {}
model_path = RichPath.create(arguments['MODEL_PATH'], azure_info_path=azure_info_path)
tester = MrrSearchTester(model_path, test_batch_size=int(arguments['--test-batch-size']),
distance_metric=arguments['--distance-metric'], hypers_override=hypers_override)
# Load dataset
if arguments['--standard-dataset'] or arguments['--method2code-dataset']:
data = model_test.get_dataset_from(test_data_dirs, use_func_names=arguments['--method2code-dataset'])
else:
raise Exception(f'No dataset option seems to have been passed in.')
generate_html_error_report(tester=tester,
data=data,
max_num_examples=max_num_examples,
outfile=arguments['OUT_FILE'],
filter_language=arguments.get('--language-to-analyze'))
if __name__ == '__main__':
args = docopt(__doc__)
run_and_debug(lambda: run(args), args.get('--debug', False))