-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy path_1060.java
55 lines (53 loc) · 2.29 KB
/
_1060.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
package com.fishercoder.solutions.secondthousand;
public class _1060 {
public static class Solution1 {
// Time: O(n)
// This is to calculate the number of missing elements in between each two numbers from left
// to right
public int missingElement(int[] nums, int k) {
int missing;
for (int i = 1; i < nums.length; i++) {
missing = nums[i] - nums[i - 1] - 1;
if (missing >= k) {
return nums[i - 1] + k;
}
k -= missing;
}
return nums[nums.length - 1] + k;
}
}
public static class Solution2 {
// Time: O(logn)
// credit: https://leetcode.com/problems/missing-element-in-sorted-array/editorial/
// We use binary search here, instead of focusing on the missing elements between two
// adjacent numbers,
// we can focus on the number of missing elements between any two numbers: nums[0] and
// nums[i]
// e.g. given this array: 4, 7, 9, 10, 14, i = 2;
// if nothing is missing, the elements should be 4,5,6,7,8,9, in other words,
// the total number of elements should be nums[2] - nums[0] + 1 = 9 - 4 + 1 = 6
// however, in reality, there's only i - 0 + 1 = 2 - 0 + 1 = 3 elements, so we are missing 6
// - 3 = 3 elements, they are 5,6,8
// so the formula became: (nums[i] - nums[0] + 1) - (i - 0 + 1) = nums[i] - nums[0] - i
public int missingElement(int[] nums, int k) {
int left = 0;
int right = nums.length - 1;
while (left < right) {
int mid =
right
- (right - left)
/ 2; // has to be written this way, otherwise, infinite
// loop, since we assign mid to left instead of mid + 1
// to left, although mathematically, it's equivalent to
// left + (right - left) / 2, integer division rounds
// off in Java
if (nums[mid] - nums[0] - mid < k) {
left = mid;
} else {
right = mid - 1;
}
}
return nums[0] + k + left;
}
}
}