1
1
from sklearn .datasets import load_iris
2
2
from sklearn import svm
3
3
from sklearn .model_selection import train_test_split
4
- import doctest
5
4
6
5
7
6
# different functions implementing different types of SVM's
@@ -12,15 +11,15 @@ def NuSVC(train_x, train_y):
12
11
13
12
14
13
def Linearsvc (train_x , train_y ):
15
- svc_linear = svm .LinearSVC ()
14
+ svc_linear = svm .LinearSVC (tol = 10e-2 )
16
15
svc_linear .fit (train_x , train_y )
17
16
return svc_linear
18
17
19
18
20
19
def SVC (train_x , train_y ):
21
20
# svm.SVC(C=1.0, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True,
22
21
# probability=False,tol=0.001, cache_size=200, class_weight=None, verbose=False,
23
- # max_iter=-1 , random_state=None)
22
+ # max_iter=1000 , random_state=None)
24
23
# various parameters like "kernel","gamma","C" can effectively tuned for a given
25
24
# machine learning model.
26
25
SVC = svm .SVC (gamma = "auto" )
@@ -39,7 +38,6 @@ def test(X_new):
39
38
'versicolor'
40
39
>>> test([6,3,4,1])
41
40
'versicolor'
42
-
43
41
"""
44
42
iris = load_iris ()
45
43
# splitting the dataset to test and train
@@ -55,4 +53,6 @@ def test(X_new):
55
53
56
54
57
55
if __name__ == "__main__" :
56
+ import doctest
57
+
58
58
doctest .testmod ()
0 commit comments