-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathencode_features.py
executable file
·152 lines (130 loc) · 5.7 KB
/
encode_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import argparse
import os
import numpy as np
import torch
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
from torch.utils.data import DataLoader
from scene_generation.bilinear import crop_bbox_batch
from scene_generation.data.coco import CocoSceneGraphDataset, coco_collate_fn
from scene_generation.data.coco_panoptic import CocoPanopticSceneGraphDataset, coco_panoptic_collate_fn
from scene_generation.model import Model
from scene_generation.utils import int_tuple, bool_flag
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', required=True)
parser.add_argument('--model_mode', default='eval', choices=['train', 'eval'])
# Shared dataset options
parser.add_argument('--image_size', default=(128, 128), type=int_tuple)
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--shuffle', default=False, type=bool_flag)
parser.add_argument('--loader_num_workers', default=4, type=int)
parser.add_argument('--num_samples', default=None, type=int)
parser.add_argument('--object_size', default=64, type=int)
# For COCO
COCO_DIR = os.path.expanduser('~/data3/data/coco')
parser.add_argument('--coco_image_dir', default=os.path.join(COCO_DIR, 'images/train2017'))
parser.add_argument('--instances_json', default=os.path.join(COCO_DIR, 'annotations/instances_train2017.json'))
parser.add_argument('--stuff_json', default=os.path.join(COCO_DIR, 'annotations/stuff_train2017.json'))
def build_coco_dset(args, checkpoint):
checkpoint_args = checkpoint['args']
print('include other: ', checkpoint_args.get('coco_include_other'))
dset_kwargs = {
'image_dir': args.coco_image_dir,
'instances_json': args.instances_json,
'stuff_json': args.stuff_json,
'image_size': args.image_size,
'mask_size': checkpoint_args['mask_size'],
'max_samples': args.num_samples,
'min_object_size': checkpoint_args['min_object_size'],
'min_objects_per_image': checkpoint_args['min_objects_per_image'],
'instance_whitelist': checkpoint_args['instance_whitelist'],
'stuff_whitelist': checkpoint_args['stuff_whitelist'],
'include_other': checkpoint_args.get('coco_include_other', True),
}
dset = CocoSceneGraphDataset(**dset_kwargs)
return dset
def build_model(args, checkpoint):
kwargs = checkpoint['model_kwargs']
model = Model(**kwargs)
model.load_state_dict(checkpoint['model_state'])
if args.model_mode == 'eval':
model.eval()
elif args.model_mode == 'train':
model.train()
model.image_size = args.image_size
model.cuda()
return model
def build_loader(args, checkpoint):
dset = build_coco_dset(args, checkpoint)
collate_fn = coco_collate_fn
loader_kwargs = {
'batch_size': args.batch_size,
'num_workers': args.loader_num_workers,
'shuffle': args.shuffle,
'collate_fn': collate_fn,
}
loader = DataLoader(dset, **loader_kwargs)
return loader
def cluster(features, num_objs, n_clusters, save_path):
name = 'features'
centers = {}
for label in range(num_objs):
feat = features[label]
if feat.shape[0]:
n_feat_clusters = min(feat.shape[0], n_clusters)
if n_feat_clusters < n_clusters:
print(label)
kmeans = KMeans(n_clusters=n_feat_clusters, random_state=0).fit(feat)
if n_feat_clusters == 1:
centers[label] = kmeans.cluster_centers_
else:
one_dimension_centers = TSNE(n_components=1).fit_transform(kmeans.cluster_centers_)
args = np.argsort(one_dimension_centers.reshape(-1))
centers[label] = kmeans.cluster_centers_[args]
save_name = os.path.join(save_path, name + '_clustered_%03d.npy' % n_clusters)
np.save(save_name, centers)
print('saving to %s' % save_name)
def main(opt):
name = 'features'
checkpoint = torch.load(opt.checkpoint)
rep_size = checkpoint['model_kwargs']['rep_size']
vocab = checkpoint['model_kwargs']['vocab']
num_objs = len(vocab['object_to_idx'])
model = build_model(opt, checkpoint)
loader = build_loader(opt, checkpoint)
save_path = os.path.dirname(opt.checkpoint)
########### Encode features ###########
counter = 0
max_counter = 1000000000
print('begin')
with torch.no_grad():
features = {}
for label in range(num_objs):
features[label] = np.zeros((0, rep_size))
for i, data in enumerate(loader):
if counter >= max_counter:
break
imgs = data[0].cuda()
objs = data[1]
objs = [j.item() for j in objs]
boxes = data[2].cuda()
obj_to_img = data[5].cuda()
crops = crop_bbox_batch(imgs, boxes, obj_to_img, opt.object_size)
feat = model.repr_net(model.image_encoder(crops)).cpu()
for ind, label in enumerate(objs):
features[label] = np.append(features[label], feat[ind].view(1, -1), axis=0)
counter += len(objs)
# print('%d / %d images' % (i + 1, dataset_size))
save_name = os.path.join(save_path, name + '.npy')
np.save(save_name, features)
############## Clustering ###########
print('begin clustering')
load_name = os.path.join(save_path, name + '.npy')
features = np.load(load_name).item()
cluster(features, num_objs, 100, save_path)
cluster(features, num_objs, 10, save_path)
cluster(features, num_objs, 1, save_path)
if __name__ == '__main__':
opt = parser.parse_args()
opt.object_size = 64
main(opt)