-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathcreate_attributes_file.py
137 lines (118 loc) · 5.52 KB
/
create_attributes_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse
import os
import pickle
from torch.utils.data import DataLoader
from scene_generation.data.coco import CocoSceneGraphDataset, coco_collate_fn
from scene_generation.data.coco_panoptic import CocoPanopticSceneGraphDataset, coco_panoptic_collate_fn
from scene_generation.utils import int_tuple, bool_flag
from scene_generation.utils import str_tuple
parser = argparse.ArgumentParser()
# Shared dataset options
parser.add_argument('--dataset', default='coco')
parser.add_argument('--image_size', default=(128, 128), type=int_tuple)
parser.add_argument('--min_object_size', default=0.02, type=float)
parser.add_argument('--min_objects_per_image', default=3, type=int)
parser.add_argument('--max_objects_per_image', default=8, type=int)
parser.add_argument('--instance_whitelist', default=None, type=str_tuple)
parser.add_argument('--stuff_whitelist', default=None, type=str_tuple)
parser.add_argument('--coco_include_other', default=False, type=bool_flag)
parser.add_argument('--is_panoptic', default=False, type=bool_flag)
parser.add_argument('--batch_size', default=24, type=int)
parser.add_argument('--shuffle', default=False, type=bool_flag)
parser.add_argument('--loader_num_workers', default=4, type=int)
parser.add_argument('--num_samples', default=None, type=int)
parser.add_argument('--object_size', default=64, type=int)
parser.add_argument('--grid_size', default=25, type=int)
parser.add_argument('--size_attribute_len', default=10, type=int)
parser.add_argument('--output_dir', default='models')
COCO_DIR = os.path.expanduser('datasets/coco')
parser.add_argument('--coco_image_dir',
default=os.path.join(COCO_DIR, 'images/train2017'))
parser.add_argument('--instances_json',
default=os.path.join(COCO_DIR, 'annotations/instances_train2017.json'))
parser.add_argument('--stuff_json',
default=os.path.join(COCO_DIR, 'annotations/stuff_train2017.json'))
parser.add_argument('--coco_panoptic_train', default=os.path.join(COCO_DIR, 'annotations/panoptic_train2017.json'))
parser.add_argument('--coco_panoptic_segmentation_train',
default=os.path.join(COCO_DIR, 'panoptic/annotations/panoptic_train2017'))
def build_coco_dset(args):
dset_kwargs = {
'image_dir': args.coco_image_dir,
'instances_json': args.instances_json,
'stuff_json': args.stuff_json,
'image_size': args.image_size,
'mask_size': 32,
'max_samples': args.num_samples,
'min_object_size': args.min_object_size,
'min_objects_per_image': args.min_objects_per_image,
'max_objects_per_image': args.max_objects_per_image,
'instance_whitelist': args.instance_whitelist,
'stuff_whitelist': args.stuff_whitelist,
'include_other': args.coco_include_other,
'test_part': False,
'sample_attributes': False,
'grid_size': args.grid_size
}
dset = CocoSceneGraphDataset(**dset_kwargs)
return dset
def build_coco_panoptic_dset(args):
dset_kwargs = {
'image_dir': args.coco_image_dir,
'instances_json': args.instances_json,
'panoptic': args.coco_panoptic_train,
'panoptic_segmentation': args.coco_panoptic_segmentation_train,
'stuff_json': args.stuff_json,
'image_size': args.image_size,
'mask_size': 32,
'max_samples': args.num_samples,
'min_object_size': args.min_object_size,
'min_objects_per_image': args.min_objects_per_image,
'max_objects_per_image': args.max_objects_per_image,
'instance_whitelist': args.instance_whitelist,
'stuff_whitelist': args.stuff_whitelist,
'include_other': args.coco_include_other,
'test_part': False,
'sample_attributes': args.sample_attributes,
'grid_size': args.grid_size
}
dset = CocoPanopticSceneGraphDataset(**dset_kwargs)
return dset
def build_loader(args, is_panoptic):
if is_panoptic:
dset = build_coco_panoptic_dset(args)
collate_fn = coco_panoptic_collate_fn
else:
dset = build_coco_dset(args)
collate_fn = coco_collate_fn
loader_kwargs = {
'batch_size': args.batch_size,
'num_workers': args.loader_num_workers,
'shuffle': args.shuffle,
'collate_fn': collate_fn,
}
loader = DataLoader(dset, **loader_kwargs)
return loader
if __name__ == '__main__':
args = parser.parse_args()
print('Loading dataset')
loader = build_loader(args, args.is_panoptic)
vocab = loader.dataset.vocab
idx_to_name = vocab['my_idx_to_obj']
sample_attributes = {'location': {}, 'size': {}}
for obj_name in idx_to_name:
sample_attributes['location'][obj_name] = [0] * args.grid_size
sample_attributes['size'][obj_name] = [0] * args.size_attribute_len
print('Iterating objects')
for _, objs, _, _, _, _, _, attributes in loader:
for obj, attribute in zip(objs, attributes):
obj = obj.item()
if obj == 0:
continue
obj_name = idx_to_name[obj - 1]
size_index = attribute.int().tolist()[:args.size_attribute_len].index(1)
location_index = attribute.int().tolist()[args.size_attribute_len:].index(1)
sample_attributes['size'][obj_name][size_index] += 1
sample_attributes['location'][obj_name][location_index] += 1
attributes_file = './models/attributes_{}_{}.pickle'.format(args.size_attribute_len, args.grid_size)
print('Saving attributes file to {}'.format(attributes_file))
pickle.dump(sample_attributes, open(attributes_file, 'wb'))