-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathgroom.py
90 lines (73 loc) · 2.88 KB
/
groom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import sys
from sklearn.ensemble import RandomForestClassifier
from groomlib import analyze_corpus
from groomlib import convert_categorical_data
from groomlib import format_code
from groomlib import graph_importance
from groomlib import print_importances
import numpy as np
import groomlib
sample_java = \
"""
package org.antlr.groom;
import java.util.List;
public class InputDocument {
public String fileName;
public char[] content;
public int index;
public List<int[]> data;
public InputDocument(InputDocument d, int index) {
this.fileName = d.fileName;
this.content = d.content;
this.index = index;
}
public InputDocument(String fileName, char[] content) {
this.content = content;
this.fileName = fileName;
}
@Override
public String toString(String fileName, char[] content) {
i = this.content + content;
return fileName+"["+content.length+"]"+
"@"+index;
}
}
"""
# TRAIN ON CORPUS
# import pstats
# cProfile.run("inject_newlines, features = analyze_corpus(sys.argv[1])", "stats")
# p = pstats.Stats('stats')
# p.strip_dirs().sort_stats("time").print_stats()
inject_newlines, indents, whitespace, features = analyze_corpus(sys.argv[1])
# for i in range(len(indents)):
# print whitespace[i], features[i]
vec, transformed_features = convert_categorical_data(features)
newline_predictor_RF = RandomForestClassifier(n_estimators=300)
newline_forest = newline_predictor_RF.fit(transformed_features, inject_newlines)
print_importances(newline_forest, vec.get_feature_names(), n=15)
indent_predictor_RF = RandomForestClassifier(n_estimators=300)
indent_forest = indent_predictor_RF.fit(transformed_features, indents)
print_importances(indent_forest, vec.get_feature_names(), n=15)
whitespace_predictor_RF = RandomForestClassifier(n_estimators=300)
whitespace_forest = whitespace_predictor_RF.fit(transformed_features, whitespace)
print_importances(whitespace_forest, vec.get_feature_names(), n=15)
# PREDICT
# sample_java = open("samples/stringtemplate4/org/stringtemplate/v4/STGroup.java", "r").read()
sample_java = sample_java.expandtabs(groomlib.TABSIZE)
format_code(newline_forest, indent_forest, whitespace_forest, vec, sample_java)
# graph_importance(forest, vec.get_feature_names())
# tokens_testing, inject_newlines_testing, features_testing = extract_data(sample_java)
# transformed_data_testing = vec.transform(todict(features_testing)).toarray()
# X = transformed_data_testing
# Y_truth = inject_newlines_testing # truth about newlines in sample input
#
# newline_predictions = forest.predict(X)
# newline_predictions_proba = forest.predict_proba(X)
# i = 0
# for probs in newline_predictions_proba:
# print "%-25s %s" % (probs, tokens_testing[i])
# i += 1
#
# format_code(sample_java, None)
# format_code(sample_java, newline_predictions)
# graph_importance(forest, vec.get_feature_names(), X)