forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_1372.java
57 lines (52 loc) · 1.96 KB
/
_1372.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
package com.fishercoder.solutions;
import com.fishercoder.common.classes.TreeNode;
import java.sql.Struct;
/**
* 1372. Longest ZigZag Path in a Binary Tree
*
* Given a binary tree root, a ZigZag path for a binary tree is defined as follow:
* Choose any node in the binary tree and a direction (right or left).
* If the current direction is right then move to the right child of the current node otherwise move to the left child.
* Change the direction from right to left or right to left.
* Repeat the second and third step until you can't move in the tree.
* Zigzag length is defined as the number of nodes visited - 1. (A single node has a length of 0).
* Return the longest ZigZag path contained in that tree.
*
* Example 1:
* Input: root = [1,null,1,1,1,null,null,1,1,null,1,null,null,null,1,null,1]
* Output: 3
* Explanation: Longest ZigZag path in blue nodes (right -> left -> right).
*
* Example 2:
* Input: root = [1,1,1,null,1,null,null,1,1,null,1]
* Output: 4
* Explanation: Longest ZigZag path in blue nodes (left -> right -> left -> right).
*
* Example 3:
* Input: root = [1]
* Output: 0
*
* Constraints:
* Each tree has at most 50000 nodes..
* Each node's value is between [1, 100].
* */
public class _1372 {
public static class Solution1 {
/**credit: https://leetcode.com/problems/longest-zigzag-path-in-a-binary-tree/discuss/531808/Java-Recursion-Try-each-node-as-a-zigzag-root-then-return-valid-sum-to-parent*/
int maxLength = 0;
public int longestZigZag(TreeNode root) {
dfs(root, true);
return maxLength;
}
private int dfs(TreeNode root, boolean isLeft) {
if (root == null) {
return 0;
}
int left = dfs(root.left, false);
int right = dfs(root.right, true);
maxLength = Math.max(maxLength, left);
maxLength = Math.max(maxLength, right);
return 1 + (isLeft ? left : right);
}
}
}