forked from AtsushiSakai/PythonRobotics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulator.py
147 lines (104 loc) · 3.8 KB
/
simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
"""
Simulator
author: Atsushi Sakai
"""
import numpy as np
import matplotlib.pyplot as plt
import math
import random
from scipy.spatial.transform import Rotation as Rot
class VehicleSimulator:
def __init__(self, i_x, i_y, i_yaw, i_v, max_v, w, L):
self.x = i_x
self.y = i_y
self.yaw = i_yaw
self.v = i_v
self.max_v = max_v
self.W = w
self.L = L
self._calc_vehicle_contour()
def update(self, dt, a, omega):
self.x += self.v * np.cos(self.yaw) * dt
self.y += self.v * np.sin(self.yaw) * dt
self.yaw += omega * dt
self.v += a * dt
if self.v >= self.max_v:
self.v = self.max_v
def plot(self):
plt.plot(self.x, self.y, ".b")
# convert global coordinate
gx, gy = self.calc_global_contour()
plt.plot(gx, gy, "--b")
def calc_global_contour(self):
rot = Rot.from_euler('z', self.yaw).as_matrix()[0:2, 0:2]
gxy = np.stack([self.vc_x, self.vc_y]).T @ rot
gx = gxy[:, 0] + self.x
gy = gxy[:, 1] + self.y
return gx, gy
def _calc_vehicle_contour(self):
self.vc_x = []
self.vc_y = []
self.vc_x.append(self.L / 2.0)
self.vc_y.append(self.W / 2.0)
self.vc_x.append(self.L / 2.0)
self.vc_y.append(-self.W / 2.0)
self.vc_x.append(-self.L / 2.0)
self.vc_y.append(-self.W / 2.0)
self.vc_x.append(-self.L / 2.0)
self.vc_y.append(self.W / 2.0)
self.vc_x.append(self.L / 2.0)
self.vc_y.append(self.W / 2.0)
self.vc_x, self.vc_y = self._interpolate(self.vc_x, self.vc_y)
@staticmethod
def _interpolate(x, y):
rx, ry = [], []
d_theta = 0.05
for i in range(len(x) - 1):
rx.extend([(1.0 - theta) * x[i] + theta * x[i + 1]
for theta in np.arange(0.0, 1.0, d_theta)])
ry.extend([(1.0 - theta) * y[i] + theta * y[i + 1]
for theta in np.arange(0.0, 1.0, d_theta)])
rx.extend([(1.0 - theta) * x[len(x) - 1] + theta * x[1]
for theta in np.arange(0.0, 1.0, d_theta)])
ry.extend([(1.0 - theta) * y[len(y) - 1] + theta * y[1]
for theta in np.arange(0.0, 1.0, d_theta)])
return rx, ry
class LidarSimulator:
def __init__(self):
self.range_noise = 0.01
def get_observation_points(self, v_list, angle_resolution):
x, y, angle, r = [], [], [], []
# store all points
for v in v_list:
gx, gy = v.calc_global_contour()
for vx, vy in zip(gx, gy):
v_angle = math.atan2(vy, vx)
vr = np.hypot(vx, vy) * random.uniform(1.0 - self.range_noise,
1.0 + self.range_noise)
x.append(vx)
y.append(vy)
angle.append(v_angle)
r.append(vr)
# ray casting filter
rx, ry = self.ray_casting_filter(angle, r, angle_resolution)
return rx, ry
@staticmethod
def ray_casting_filter(theta_l, range_l, angle_resolution):
rx, ry = [], []
range_db = [float("inf") for _ in range(
int(np.floor((np.pi * 2.0) / angle_resolution)) + 1)]
for i in range(len(theta_l)):
angle_id = int(round(theta_l[i] / angle_resolution))
if range_db[angle_id] > range_l[i]:
range_db[angle_id] = range_l[i]
for i in range(len(range_db)):
t = i * angle_resolution
if range_db[i] != float("inf"):
rx.append(range_db[i] * np.cos(t))
ry.append(range_db[i] * np.sin(t))
return rx, ry
def main():
print("start!!")
print("done!!")
if __name__ == '__main__':
main()