-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathcreate_onnx.py
874 lines (793 loc) · 35.6 KB
/
create_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import re
import sys
import argparse
import logging
import cv2
import onnx_graphsurgeon as gs
import numpy as np
import onnx
from onnx import shape_inference
import torch
try:
from detectron2.engine.defaults import DefaultPredictor
from detectron2.modeling import build_model
from detectron2.config import get_cfg
from detectron2.structures import ImageList
except ImportError:
print("Could not import Detectron 2 modules. Maybe you did not install Detectron 2")
print(
"Please install Detectron 2, check https://github.com/facebookresearch/detectron2/blob/main/INSTALL.md"
)
sys.exit(1)
import onnx_utils
logging.basicConfig(level=logging.INFO)
logging.getLogger("ModelHelper").setLevel(logging.INFO)
log = logging.getLogger("ModelHelper")
class DET2GraphSurgeon:
def __init__(self, saved_model_path, config_file, weights):
"""
Constructor of the Model Graph Surgeon object, to do the conversion of a Detectron 2 Mask R-CNN exported model
to an ONNX-TensorRT parsable model.
:param saved_model_path: The path pointing to the exported Detectron 2 Mask R-CNN ONNX model.
:param config_file: The path pointing to the Detectron 2 yaml file which describes the model.
:param config_file: Weights to load for the Detectron 2 model.
"""
def det2_setup(config_file, weights):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
cfg.merge_from_file(config_file)
cfg.merge_from_list(["MODEL.WEIGHTS", weights])
cfg.freeze()
return cfg
# Import exported Detectron 2 Mask R-CNN ONNX model as GraphSurgeon object.
self.graph = gs.import_onnx(onnx.load(saved_model_path))
assert self.graph
log.info("ONNX graph loaded successfully")
# Fold constants via ONNX-GS that exported script might've missed.
self.graph.fold_constants()
# Set up Detectron 2 model configuration.
self.det2_cfg = det2_setup(config_file, weights)
# Getting model characteristics.
self.fpn_out_channels = self.det2_cfg.MODEL.FPN.OUT_CHANNELS
self.num_classes = self.det2_cfg.MODEL.ROI_HEADS.NUM_CLASSES
self.first_NMS_max_proposals = self.det2_cfg.MODEL.RPN.POST_NMS_TOPK_TEST
self.first_NMS_iou_threshold = self.det2_cfg.MODEL.RPN.NMS_THRESH
self.first_NMS_score_threshold = 0.01
self.first_ROIAlign_pooled_size = (
self.det2_cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION
)
self.first_ROIAlign_sampling_ratio = (
self.det2_cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
)
self.first_ROIAlign_type = self.det2_cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE
self.second_NMS_max_proposals = self.det2_cfg.TEST.DETECTIONS_PER_IMAGE
self.second_NMS_iou_threshold = self.det2_cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST
self.second_NMS_score_threshold = (
self.det2_cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST
)
self.second_ROIAlign_pooled_size = (
self.det2_cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION
)
self.second_ROIAlign_sampling_ratio = (
self.det2_cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO
)
self.second_ROIAlign_type = self.det2_cfg.MODEL.ROI_MASK_HEAD.POOLER_TYPE
self.mask_out_res = 28
# Model characteristics.
log.info("Number of FPN output channels is {}".format(self.fpn_out_channels))
log.info("Number of classes is {}".format(self.num_classes))
log.info("First NMS max proposals is {}".format(self.first_NMS_max_proposals))
log.info("First NMS iou threshold is {}".format(self.first_NMS_iou_threshold))
log.info(
"First NMS score threshold is {}".format(self.first_NMS_score_threshold)
)
log.info("First ROIAlign type is {}".format(self.first_ROIAlign_type))
log.info(
"First ROIAlign pooled size is {}".format(self.first_ROIAlign_pooled_size)
)
log.info(
"First ROIAlign sampling ratio is {}".format(
self.first_ROIAlign_sampling_ratio
)
)
log.info("Second NMS max proposals is {}".format(self.second_NMS_max_proposals))
log.info("Second NMS iou threshold is {}".format(self.second_NMS_iou_threshold))
log.info(
"Second NMS score threshold is {}".format(self.second_NMS_score_threshold)
)
log.info("Second ROIAlign type is {}".format(self.second_ROIAlign_type))
log.info(
"Second ROIAlign pooled size is {}".format(self.second_ROIAlign_pooled_size)
)
log.info(
"Second ROIAlign sampling ratio is {}".format(
self.second_ROIAlign_sampling_ratio
)
)
log.info(
"Individual mask output resolution is {}x{}".format(
self.mask_out_res, self.mask_out_res
)
)
self.batch_size = None
def sanitize(self):
"""
Sanitize the graph by cleaning any unconnected nodes, do a topological resort, and fold constant inputs values.
When possible, run shape inference on the ONNX graph to determine tensor shapes.
"""
for i in range(3):
count_before = len(self.graph.nodes)
self.graph.cleanup().toposort()
try:
for node in self.graph.nodes:
for o in node.outputs:
o.shape = None
model = gs.export_onnx(self.graph)
model = shape_inference.infer_shapes(model)
self.graph = gs.import_onnx(model)
except Exception as e:
log.info(
"Shape inference could not be performed at this time:\n{}".format(e)
)
try:
self.graph.fold_constants(fold_shapes=True)
except TypeError as e:
log.error(
"This version of ONNX GraphSurgeon does not support folding shapes, please upgrade your "
"onnx_graphsurgeon module. Error:\n{}".format(e)
)
raise
count_after = len(self.graph.nodes)
if count_before == count_after:
# No new folding occurred in this iteration, so we can stop for now.
break
def get_anchors(self, sample_image):
"""
Detectron 2 exported ONNX does not contain anchors required for efficientNMS plug-in, so they must be generated
"offline" by calling actual Detectron 2 model and getting anchors from it.
:param sample_image: Sample image required to run through the model and obtain anchors.
Can be any image from a dataset. Make sure listed here Detectron 2 preprocessing steps
actually match your preprocessing steps. Otherwise, behavior can be unpredictable.
Additionally, anchors have to be generated for a fixed input dimensions,
meaning as soon as image leaves a preprocessor and enters predictor.model.backbone() it must have
a fixed dimension (1344x1344 in my case) that every single image in dataset must follow, since currently
TensorRT plug-ins do not support dynamic shapes.
"""
# Get Detectron 2 model config and build it.
predictor = DefaultPredictor(self.det2_cfg)
model = build_model(self.det2_cfg)
# Image preprocessing.
input_im = cv2.imread(sample_image)
raw_height, raw_width = input_im.shape[:2]
image = predictor.aug.get_transform(input_im).apply_image(input_im)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
# Model preprocessing.
inputs = [{"image": image, "height": raw_height, "width": raw_width}]
images = [x["image"].to(model.device) for x in inputs]
images = [(x - model.pixel_mean) / model.pixel_std for x in images]
imagelist_images = ImageList.from_tensors(images, 1344)
# Get feature maps from backbone.
features = predictor.model.backbone(imagelist_images.tensor)
# Get proposals from Region Proposal Network and obtain anchors from anchor generator.
features = [features[f] for f in predictor.model.proposal_generator.in_features]
det2_anchors = predictor.model.proposal_generator.anchor_generator(features)
# Extract anchors based on feature maps in ascending order (P2->P6).
p2_anchors = det2_anchors[0].tensor.detach().cpu().numpy()
p3_anchors = det2_anchors[1].tensor.detach().cpu().numpy()
p4_anchors = det2_anchors[2].tensor.detach().cpu().numpy()
p5_anchors = det2_anchors[3].tensor.detach().cpu().numpy()
p6_anchors = det2_anchors[4].tensor.detach().cpu().numpy()
final_anchors = np.concatenate(
(p2_anchors, p3_anchors, p4_anchors, p5_anchors, p6_anchors)
)
return final_anchors
def save(self, output_path):
"""
Save the ONNX model to the given location.
:param output_path: Path pointing to the location where to write out the updated ONNX model.
"""
self.graph.cleanup().toposort()
model = gs.export_onnx(self.graph)
output_path = os.path.realpath(output_path)
os.makedirs(os.path.dirname(output_path), exist_ok=True)
onnx.save(model, output_path)
log.info("Saved ONNX model to {}".format(output_path))
def update_preprocessor(self, batch_size):
"""
Remove all the pre-processing nodes in the ONNX graph and leave only the image normalization essentials.
:param batch_size: The batch size to use for the ONNX graph.
"""
# Set graph inputs.
self.batch_size = batch_size
self.height = self.graph.inputs[0].shape[1]
self.width = self.graph.inputs[0].shape[2]
input_shape = [self.batch_size, 3, self.height, self.width]
self.graph.inputs[0].shape = input_shape
self.graph.inputs[0].dtype = np.float32
self.graph.inputs[0].name = "input_tensor"
self.sanitize()
log.info(
"ONNX graph input shape: {} [NCHW format set]".format(
self.graph.inputs[0].shape
)
)
# Find the initial nodes of the graph, whatever the input is first connected to, and disconnect them.
for node in [
node for node in self.graph.nodes if self.graph.inputs[0] in node.inputs
]:
node.inputs.clear()
# Get input tensor.
input_tensor = self.graph.inputs[0]
# Create preprocessing Sub node and connect input tensor to it.
sub_const = np.expand_dims(
np.asarray([255 * 0.406, 255 * 0.456, 255 * 0.485], dtype=np.float32),
axis=(1, 2),
)
sub_out = self.graph.op_with_const(
"Sub", "preprocessor/mean", input_tensor, sub_const
)
# Find first Div node and connect to output of Sub node.
div_node = self.graph.find_node_by_op("Div")
log.info("Found {} node".format(div_node.op))
div_node.inputs[0] = sub_out[0]
# Find first Conv and connect preprocessor directly to it.
conv_node = self.graph.find_node_by_op("Conv")
log.info("Found {} node".format(conv_node.op))
conv_node.inputs[0] = div_node.outputs[0]
# Reshape nodes tend to update the batch dimension to a fixed value of 1, they should use the batch size instead.
for node in [node for node in self.graph.nodes if node.op == "Reshape"]:
if type(node.inputs[1]) == gs.Constant and node.inputs[1].values[0] == 1:
node.inputs[1].values[0] = self.batch_size
def NMS(
self,
boxes,
scores,
anchors,
background_class,
score_activation,
max_proposals,
iou_threshold,
nms_score_threshold,
user_threshold,
nms_name=None,
):
# Helper function to create the NMS Plugin node with the selected inputs.
# EfficientNMS_TRT TensorRT Plugin is suitable for our use case.
# :param boxes: The box predictions from the Box Net.
# :param scores: The class predictions from the Class Net.
# :param anchors: The default anchor coordinates.
# :param background_class: The label ID for the background class.
# :param max_proposals: Number of proposals made by NMS.
# :param score_activation: If set to True - apply sigmoid activation to the confidence scores during NMS operation,
# if false - no activation.
# :param iou_threshold: NMS intersection over union threshold, given by self.det2_cfg.
# :param nms_score_threshold: NMS score threshold, given by self.det2_cfg.
# :param user_threshold: User's given threshold to overwrite default NMS score threshold.
# :param nms_name: Name of NMS node in a graph, renames NMS elements accordingly in order to eliminate cycles.
if nms_name is None:
nms_name = ""
else:
nms_name = "_" + nms_name
# Set score threshold.
score_threshold = (
nms_score_threshold if user_threshold is None else user_threshold
)
# NMS Outputs.
nms_output_num_detections = gs.Variable(
name="num_detections" + nms_name, dtype=np.int32, shape=[self.batch_size, 1]
)
nms_output_boxes = gs.Variable(
name="detection_boxes" + nms_name,
dtype=np.float32,
shape=[self.batch_size, max_proposals, 4],
)
nms_output_scores = gs.Variable(
name="detection_scores" + nms_name,
dtype=np.float32,
shape=[self.batch_size, max_proposals],
)
nms_output_classes = gs.Variable(
name="detection_classes" + nms_name,
dtype=np.int32,
shape=[self.batch_size, max_proposals],
)
nms_outputs = [
nms_output_num_detections,
nms_output_boxes,
nms_output_scores,
nms_output_classes,
]
# Plugin.
self.graph.plugin(
op="EfficientNMS_TRT",
name="nms" + nms_name,
inputs=[boxes, scores, anchors],
outputs=nms_outputs,
attrs={
"plugin_version": "1",
"background_class": background_class,
"max_output_boxes": max_proposals,
"score_threshold": max(0.01, score_threshold),
"iou_threshold": iou_threshold,
"score_activation": score_activation,
"class_agnostic": False,
"box_coding": 1,
},
)
log.info("Created nms{} with EfficientNMS_TRT plugin".format(nms_name))
return nms_outputs
def ROIAlign(
self,
rois,
p2,
p3,
p4,
p5,
pooled_size,
sampling_ratio,
roi_align_type,
num_rois,
ra_name,
):
# Helper function to create the ROIAlign Plugin node with the selected inputs.
# PyramidROIAlign_TRT TensorRT Plugin is suitable for our use case.
# :param rois: Regions of interest/detection boxes outputs from preceding NMS node.
# :param p2: Output of p2 feature map.
# :param p3: Output of p3 feature map.
# :param p4: Output of p4 feature map.
# :param p5: Output of p5 feature map.
# :param pooled_size: Pooled output dimensions.
# :param sampling_ratio: Number of sampling points in the interpolation grid used to compute the output value of each pooled output bin.
# :param roi_align_type: Type of Detectron 2 ROIAlign op, either ROIAlign (vanilla) or ROIAlignV2 (0.5 coordinate offset).
# :param num_rois: Number of ROIs resulting from ROIAlign operation.
# :param ra_name: Name of ROIAlign node in a graph, renames ROIAlign elements accordingly in order to eliminate cycles.
# Different types of Detectron 2's ROIAlign ops require coordinate offset that is supported by PyramidROIAlign_TRT.
if roi_align_type == "ROIAlignV2":
roi_coords_transform = 2
elif roi_align_type == "ROIAlign":
roi_coords_transform = 0
# ROIAlign outputs.
roi_align_output = gs.Variable(
name="roi_align/output_" + ra_name,
dtype=np.float32,
shape=[
self.batch_size,
num_rois,
self.fpn_out_channels,
pooled_size,
pooled_size,
],
)
# Plugin.
self.graph.plugin(
op="PyramidROIAlign_TRT",
name="roi_align_" + ra_name,
inputs=[rois, p2, p3, p4, p5],
outputs=[roi_align_output],
attrs={
"plugin_version": "1",
"fpn_scale": 224,
"pooled_size": pooled_size,
"image_size": [self.height, self.width],
"roi_coords_absolute": 0,
"roi_coords_swap": 0,
"roi_coords_transform": roi_coords_transform,
"sampling_ratio": sampling_ratio,
},
)
log.info("Created {} with PyramidROIAlign_TRT plugin".format(ra_name))
return roi_align_output
def process_graph(
self, anchors, first_nms_threshold=None, second_nms_threshold=None
):
"""
Processes the graph to replace the GenerateProposals and BoxWithNMSLimit operations with EfficientNMS_TRT
TensorRT plugin nodes and ROIAlign operations with PyramidROIAlign_TRT plugin nodes.
:param anchors: Anchors generated from sample image "offline" by Detectron 2, since anchors are not provided
inside the graph.
:param first_nms_threshold: Override the 1st NMS score threshold value. If set to None, use the value in the graph.
:param second_nms_threshold: Override the 2nd NMS score threshold value. If set to None, use the value in the graph.
"""
def backbone():
"""
Updates the graph to replace all ResizeNearest ops with ResizeNearest plugins in backbone.
"""
# Get final backbone outputs.
p2 = self.graph.find_node_by_op_name("Conv", "/backbone/fpn_output2/Conv")
p3 = self.graph.find_node_by_op_name("Conv", "/backbone/fpn_output3/Conv")
p4 = self.graph.find_node_by_op_name("Conv", "/backbone/fpn_output4/Conv")
p5 = self.graph.find_node_by_op_name("Conv", "/backbone/fpn_output5/Conv")
return p2.outputs[0], p3.outputs[0], p4.outputs[0], p5.outputs[0]
def proposal_generator(anchors, first_nms_threshold):
"""
Updates the graph to replace all GenerateProposals Caffe ops with one single NMS for proposals generation.
:param anchors: Anchors generated from sample image "offline" by Detectron 2, since anchors are not provided
inside the graph
:param first_nms_threshold: Override the 1st NMS score threshold value. If set to None, use the value in the graph.
"""
# Get nodes containing final objectness logits.
p2_logits = self.graph.find_node_by_op_name(
"Flatten", "/proposal_generator/Flatten"
)
p3_logits = self.graph.find_node_by_op_name(
"Flatten", "/proposal_generator/Flatten_1"
)
p4_logits = self.graph.find_node_by_op_name(
"Flatten", "/proposal_generator/Flatten_2"
)
p5_logits = self.graph.find_node_by_op_name(
"Flatten", "/proposal_generator/Flatten_3"
)
p6_logits = self.graph.find_node_by_op_name(
"Flatten", "/proposal_generator/Flatten_4"
)
# Get nodes containing final anchor_deltas.
p2_anchors = self.graph.find_node_by_op_name(
"Reshape", "/proposal_generator/Reshape_1"
)
p3_anchors = self.graph.find_node_by_op_name(
"Reshape", "/proposal_generator/Reshape_3"
)
p4_anchors = self.graph.find_node_by_op_name(
"Reshape", "/proposal_generator/Reshape_5"
)
p5_anchors = self.graph.find_node_by_op_name(
"Reshape", "/proposal_generator/Reshape_7"
)
p6_anchors = self.graph.find_node_by_op_name(
"Reshape", "/proposal_generator/Reshape_9"
)
# Concatenate all objectness logits/scores data.
scores_inputs = [
p2_logits.outputs[0],
p3_logits.outputs[0],
p4_logits.outputs[0],
p5_logits.outputs[0],
p6_logits.outputs[0],
]
scores_tensor = self.graph.layer(
name="scores",
op="Concat",
inputs=scores_inputs,
outputs=["scores"],
attrs={"axis": 1},
)[0]
# Unsqueeze to add 3rd dimension of 1 to match tensor dimensions of boxes tensor.
scores = self.graph.unsqueeze("scores_unsqueeze", scores_tensor, [2])[0]
# Concatenate all boxes/anchor_delta data.
boxes_inputs = [
p2_anchors.outputs[0],
p3_anchors.outputs[0],
p4_anchors.outputs[0],
p5_anchors.outputs[0],
p6_anchors.outputs[0],
]
boxes = self.graph.layer(
name="boxes",
op="Concat",
inputs=boxes_inputs,
outputs=["anchors"],
attrs={"axis": 1},
)[0]
# Convert the anchors from Corners to CenterSize encoding.
anchors = np.matmul(
anchors,
[[0.5, 0, -1, 0], [0, 0.5, 0, -1], [0.5, 0, 1, 0], [0, 0.5, 0, 1]],
)
anchors = anchors / [
self.width,
self.height,
self.width,
self.height,
] # Normalize anchors to [0-1] range
anchors = np.expand_dims(anchors, axis=0)
anchors = anchors.astype(np.float32)
anchors = gs.Constant(name="default_anchors", values=anchors)
# Create NMS node.
nms_outputs = self.NMS(
boxes,
scores,
anchors,
-1,
False,
self.first_NMS_max_proposals,
self.first_NMS_iou_threshold,
self.first_NMS_score_threshold,
first_nms_threshold,
"rpn",
)
return nms_outputs
def roi_heads(rpn_outputs, p2, p3, p4, p5, second_nms_threshold):
"""
Updates the graph to replace all ROIAlign Caffe ops with one single pyramid ROIAlign. Eliminates CollectRpnProposals
DistributeFpnProposals and BatchPermutation nodes that are not supported by TensorRT. Connects pyramid ROIAlign to box_head
and connects box_head to final box head outputs in a form of second NMS. In order to implement mask head outputs,
similar steps as in box_pooler are performed to replace mask_pooler. Finally, reimplemented mask_pooler is connected to
mask_head and mask head outputs are produced.
:param rpn_outputs: Outputs of the first NMS/proposal generator.
:param p2: Output of p2 feature map, required for ROIAlign operation.
:param p3: Output of p3 feature map, required for ROIAlign operation.
:param p4: Output of p4 feature map, required for ROIAlign operation.
:param p5: Output of p5 feature map, required for ROIAlign operation.
:param second_nms_threshold: Override the 2nd NMS score threshold value. If set to None, use the value in the graph.
"""
# Create ROIAlign node.
box_pooler_output = self.ROIAlign(
rpn_outputs[1],
p2,
p3,
p4,
p5,
self.first_ROIAlign_pooled_size,
self.first_ROIAlign_sampling_ratio,
self.first_ROIAlign_type,
self.first_NMS_max_proposals,
"box_pooler",
)
# Reshape node that prepares ROIAlign/box pooler output for Gemm node that comes next.
box_pooler_shape = np.asarray(
[
-1,
self.fpn_out_channels
* self.first_ROIAlign_pooled_size
* self.first_ROIAlign_pooled_size,
],
dtype=np.int64,
)
box_pooler_reshape = self.graph.op_with_const(
"Reshape", "box_pooler/reshape", box_pooler_output, box_pooler_shape
)
# Get first Gemm op of box head and connect box pooler to it.
first_box_head_gemm = self.graph.find_node_by_op_name(
"Gemm", "/roi_heads/box_head/fc1/Gemm"
)
first_box_head_gemm.inputs[0] = box_pooler_reshape[0]
# Get final two nodes of box predictor. Softmax op for cls_score, Gemm op for bbox_pred.
cls_score = self.graph.find_node_by_op_name("Softmax", "/roi_heads/Softmax")
bbox_pred = self.graph.find_node_by_op_name(
"Gemm", "/roi_heads/box_predictor/bbox_pred/Gemm"
)
# Linear transformation to convert box coordinates from (TopLeft, BottomRight) Corner encoding
# to CenterSize encoding. 1st NMS boxes are multiplied by transformation matrix in order to
# encode it into CenterSize format.
matmul_const = np.matrix(
"0.5 0 -1 0; 0 0.5 0 -1; 0.5 0 1 0; 0 0.5 0 1", dtype=np.float32
)
matmul_out = self.graph.matmul(
"RPN_NMS/detection_boxes_conversion", rpn_outputs[1], matmul_const
)
# Reshape node that prepares bbox_pred for scaling and second NMS.
bbox_pred_shape = np.asarray(
[self.batch_size, self.first_NMS_max_proposals, self.num_classes, 4],
dtype=np.int64,
)
bbox_pred_reshape = self.graph.op_with_const(
"Reshape", "bbox_pred/reshape", bbox_pred.outputs[0], bbox_pred_shape
)
# 0.1, 0.1, 0.2, 0.2 are localization head variance numbers, they scale bbox_pred_reshape, in order to get accurate coordinates.
scale_adj = np.expand_dims(
np.asarray([0.1, 0.1, 0.2, 0.2], dtype=np.float32), axis=(0, 1)
)
final_bbox_pred = self.graph.op_with_const(
"Mul", "bbox_pred/scale", bbox_pred_reshape[0], scale_adj
)
# Reshape node that prepares cls_score for slicing and second NMS.
cls_score_shape = np.array(
[self.batch_size, self.first_NMS_max_proposals, self.num_classes + 1],
dtype=np.int64,
)
cls_score_reshape = self.graph.op_with_const(
"Reshape", "cls_score/reshape", cls_score.outputs[0], cls_score_shape
)
# Slice operation to adjust third dimension of cls_score tensor, deletion of background class (81 in Detectron 2).
final_cls_score = self.graph.slice(
"cls_score/slicer", cls_score_reshape[0], 0, self.num_classes, 2
)
# Create NMS node.
nms_outputs = self.NMS(
final_bbox_pred[0],
final_cls_score[0],
matmul_out[0],
-1,
False,
self.second_NMS_max_proposals,
self.second_NMS_iou_threshold,
self.second_NMS_score_threshold,
second_nms_threshold,
"box_outputs",
)
# Create ROIAlign node.
mask_pooler_output = self.ROIAlign(
nms_outputs[1],
p2,
p3,
p4,
p5,
self.second_ROIAlign_pooled_size,
self.second_ROIAlign_sampling_ratio,
self.second_ROIAlign_type,
self.second_NMS_max_proposals,
"mask_pooler",
)
# Reshape mask pooler output.
mask_pooler_shape = np.asarray(
[
self.second_NMS_max_proposals * self.batch_size,
self.fpn_out_channels,
self.second_ROIAlign_pooled_size,
self.second_ROIAlign_pooled_size,
],
dtype=np.int64,
)
mask_pooler_reshape_node = self.graph.op_with_const(
"Reshape", "mask_pooler/reshape", mask_pooler_output, mask_pooler_shape
)
# Get first Conv op in mask head and connect ROIAlign's squeezed output to it.
mask_head_conv = self.graph.find_node_by_op_name(
"Conv", "/roi_heads/mask_head/mask_fcn1/Conv"
)
mask_head_conv.inputs[0] = mask_pooler_reshape_node[0]
# Reshape node that is preparing 2nd NMS class outputs for Add node that comes next.
classes_reshape_shape = np.asarray(
[self.second_NMS_max_proposals * self.batch_size], dtype=np.int64
)
classes_reshape_node = self.graph.op_with_const(
"Reshape",
"box_outputs/reshape_classes",
nms_outputs[3],
classes_reshape_shape,
)
# This loop will generate an array used in Add node, which eventually will help Gather node to pick the single
# class of interest per bounding box, instead of creating 80 masks for every single bounding box.
add_array = []
for i in range(self.second_NMS_max_proposals * self.batch_size):
if i == 0:
start_pos = 0
else:
start_pos = i * self.num_classes
add_array.append(start_pos)
# This Add node is one of the Gather node inputs, Gather node performs gather on 0th axis of data tensor
# and requires indices that set tensors to be withing bounds, this Add node provides the bounds for Gather.
add_array = np.asarray(add_array, dtype=np.int32)
classes_add_node = self.graph.op_with_const(
"Add", "box_outputs/add", classes_reshape_node[0], add_array
)
# Get the last Conv op in mask head and reshape it to correctly gather class of interest's masks.
last_conv = self.graph.find_node_by_op_name(
"Conv", "/roi_heads/mask_head/predictor/Conv"
)
last_conv_reshape_shape = np.asarray(
[
self.second_NMS_max_proposals * self.num_classes * self.batch_size,
self.mask_out_res,
self.mask_out_res,
],
dtype=np.int64,
)
last_conv_reshape_node = self.graph.op_with_const(
"Reshape",
"mask_head/reshape_all_masks",
last_conv.outputs[0],
last_conv_reshape_shape,
)
# Gather node that selects only masks belonging to detected class, 79 other masks are discarded.
final_gather = self.graph.gather(
"mask_head/final_gather",
last_conv_reshape_node[0],
classes_add_node[0],
0,
)
# Get last Sigmoid node and connect Gather node to it.
mask_head_sigmoid = self.graph.find_node_by_op_name(
"Sigmoid", "/roi_heads/mask_head/Sigmoid"
)
mask_head_sigmoid.inputs[0] = final_gather[0]
# Final Reshape node, reshapes output of Sigmoid, important for various batch_size support (not tested yet).
final_graph_reshape_shape = np.asarray(
[
self.batch_size,
self.second_NMS_max_proposals,
self.mask_out_res,
self.mask_out_res,
],
dtype=np.int64,
)
final_graph_reshape_node = self.graph.op_with_const(
"Reshape",
"mask_head/final_reshape",
mask_head_sigmoid.outputs[0],
final_graph_reshape_shape,
)
final_graph_reshape_node[0].dtype = np.float32
final_graph_reshape_node[0].name = "detection_masks"
return nms_outputs, final_graph_reshape_node[0]
# Only Detectron 2's Mask-RCNN R50-FPN 3x is supported currently.
p2, p3, p4, p5 = backbone()
rpn_outputs = proposal_generator(anchors, first_nms_threshold)
box_head_outputs, mask_head_output = roi_heads(
rpn_outputs, p2, p3, p4, p5, second_nms_threshold
)
# Append segmentation head output.
box_head_outputs.append(mask_head_output)
# Set graph outputs, both bbox and segmentation heads.
self.graph.outputs = box_head_outputs
self.sanitize()
def main(args):
det2_gs = DET2GraphSurgeon(args.exported_onnx, args.det2_config, args.det2_weights)
det2_gs.update_preprocessor(args.batch_size)
anchors = det2_gs.get_anchors(args.sample_image)
det2_gs.process_graph(anchors, args.first_nms_threshold, args.second_nms_threshold)
det2_gs.save(args.onnx)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-i",
"--exported_onnx",
help="The exported to ONNX Detectron 2 Mask R-CNN",
type=str,
)
parser.add_argument(
"-o", "--onnx", help="The output ONNX model file to write", type=str
)
parser.add_argument(
"-c",
"--det2_config",
help="The Detectron 2 config file (.yaml) for the model",
type=str,
)
parser.add_argument(
"-w", "--det2_weights", help="The Detectron 2 model weights (.pkl)", type=str
)
parser.add_argument(
"-s", "--sample_image", help="Sample image for anchors generation", type=str
)
parser.add_argument(
"-b", "--batch_size", help="Batch size for the model", type=int, default=1
)
parser.add_argument(
"-t1",
"--first_nms_threshold",
help="Override the score threshold for the 1st NMS operation",
type=float,
)
parser.add_argument(
"-t2",
"--second_nms_threshold",
help="Override the score threshold for the 2nd NMS operation",
type=float,
)
args = parser.parse_args()
if not all(
[
args.exported_onnx,
args.onnx,
args.det2_config,
args.det2_weights,
args.sample_image,
]
):
parser.print_help()
print(
"\nThese arguments are required: --exported_onnx --onnx --det2_config --det2_weights and --sample_image"
)
sys.exit(1)
main(args)