-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathcmdline_helper.py
executable file
·289 lines (236 loc) · 11.6 KB
/
cmdline_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
class ArgumentParserUtil(object):
def __init__(self, parser: argparse.ArgumentParser = None):
self.parser = parser
def build_data_parser_group(self):
data_group = self.parser.add_argument_group("Dataset arguments")
data_group.add_argument(
"--data_dir",
required=False,
default=None,
type=str,
help="Path to dataset in TFRecord format. Files should be named 'train-*' and 'validation-*'.")
data_group.add_argument("--data_idx_dir",
required=False,
default=None,
type=str,
help="Path to index files for DALI. Files should be named 'train-*' and 'validation-*'.")
data_group.add_argument("--dali",
action="store_true",
default=False,
required=False,
help="Enable DALI data input.")
data_group.add_argument("--synthetic_data_size",
required=False,
default=224,
type=int,
help="Dimension of image for synthetic dataset")
def build_training_parser_group(self):
train_group = self.parser.add_argument_group("Training arguments")
train_group.add_argument("--lr_init",
default=0.1,
type=float,
required=False,
help="Initial value for the learning rate.")
train_group.add_argument("--lr_warmup_epochs",
default=5,
type=int,
required=False,
help="Number of warmup epochs for learning rate schedule.")
train_group.add_argument("--weight_decay",
default=1e-4,
type=float,
required=False,
help="Weight Decay scale factor.")
train_group.add_argument("--weight_init",
default="fan_out",
choices=["fan_in", "fan_out"],
type=str,
required=False,
help="Model weight initialization method.")
train_group.add_argument("--momentum",
default=0.9,
type=float,
required=False,
help="SGD momentum value for the Momentum optimizer.")
train_group.add_argument("--label_smoothing",
type=float,
default=0.0,
required=False,
help="The value of label smoothing.")
train_group.add_argument("--mixup",
type=float,
default=0.0,
required=False,
help="The alpha parameter for mixup (if 0 then mixup is not applied).")
train_group.add_argument("--cosine_lr",
"--use_cosine",
"--use_cosine_lr"
"--cosine",
action="store_true",
default=False,
required=False,
help="Use cosine learning rate schedule.")
def build_generic_optimization_parser_group(self):
goptim_group = self.parser.add_argument_group("Generic optimization arguments")
goptim_group.add_argument("--xla",
"--use_xla",
action="store_true",
default=False,
required=False,
help="Enable XLA (Accelerated Linear Algebra) computation for improved performance.")
goptim_group.add_argument("--data_format",
choices=['NHWC', 'NCHW'],
type=str,
default='NHWC',
required=False,
help="Data format used to do calculations")
goptim_group.add_argument("--amp",
"--use_tf_amp",
action="store_true",
dest="amp",
default=False,
required=False,
help="Enable Automatic Mixed Precision to speedup computation using tensor cores.")
goptim_group.add_argument("--cpu",
action="store_true",
dest="cpu",
default=False,
required=False,
help="Run model on CPU instead of GPU")
amp_group = self.parser.add_argument_group("Automatic Mixed Precision arguments")
amp_group.add_argument("--static_loss_scale",
"--loss_scale",
default=-1,
required=False,
help="Use static loss scaling in FP32 AMP.")
amp_group.add_argument("--use_static_loss_scaling", required=False, action="store_true", help=argparse.SUPPRESS)
def parse_cmdline(available_arch):
p = argparse.ArgumentParser(description="JoC-RN50v1.5-TF")
p.add_argument('--arch',
choices=available_arch,
type=str,
default='resnet50',
required=False,
help="""Architecture of model to run""")
p.add_argument('--mode',
choices=[
'train', 'train_and_evaluate', 'evaluate', 'predict', 'training_benchmark', 'inference_benchmark'
],
type=str,
default='train_and_evaluate',
required=False,
help="""The execution mode of the script.""")
p.add_argument('--export_dir',
required=False,
default=None,
type=str,
help="Directory in which to write exported SavedModel.")
p.add_argument('--to_predict',
required=False,
default=None,
type=str,
help="Path to file or directory of files to run prediction on.")
p.add_argument('--batch_size', type=int, required=True, help="""Size of each minibatch per GPU.""")
p.add_argument('--num_iter', type=int, required=False, default=1, help="""Number of iterations to run.""")
p.add_argument('--run_iter',
type=int,
required=False,
default=-1,
help="""Number of training iterations to run on single run.""")
p.add_argument('--iter_unit',
choices=['epoch', 'batch'],
type=str,
required=False,
default='epoch',
help="""Unit of iterations.""")
p.add_argument(
'--warmup_steps',
default=50,
type=int,
required=False,
help="""Number of steps considered as warmup and not taken into account for performance measurements.""")
p.add_argument('--model_dir',
type=str,
required=False,
default=None,
help="""Directory in which to write model. If undefined, results dir will be used.""")
p.add_argument('--results_dir',
type=str,
required=False,
default='.',
help="""Directory in which to write training logs, summaries and checkpoints.""")
p.add_argument('--log_filename',
type=str,
required=False,
default='log.json',
help="Name of the JSON file to which write the training log")
p.add_argument('--display_every',
default=10,
type=int,
required=False,
help="""How often (in batches) to print out running information.""")
p.add_argument('--seed', type=int, default=None, help="""Random seed.""")
p.add_argument('--gpu_memory_fraction',
type=float,
default=0.7,
help="""Limit memory fraction used by training script for DALI""")
p.add_argument('--gpu_id',
type=int,
default=0,
help="""Specify ID of the target GPU on multi-device platform. Effective only for single-GPU mode.""")
p.add_argument('--finetune_checkpoint',
required=False,
default=None,
type=str,
help="Path to pre-trained checkpoint which will be used for fine-tuning")
p.add_argument("--use_final_conv",
default=False,
required=False,
action="store_true",
help="Use convolution operator instead of MLP as last layer.")
p.add_argument('--quant_delay',
type=int,
default=0,
required=False,
help="Number of steps to be run before quantization starts to happen")
p.add_argument("--quantize",
default=False,
required=False,
action="store_true",
help="Quantize weights and activations during training. (Defaults to Assymmetric quantization)")
p.add_argument("--use_qdq",
default=False,
required=False,
action="store_true",
help="Use QDQV3 op instead of FakeQuantWithMinMaxVars op for quantization. QDQv3 does only scaling")
p.add_argument("--symmetric",
default=False,
required=False,
action="store_true",
help="Quantize weights and activations during training using symmetric quantization.")
parser_util = ArgumentParserUtil(p)
parser_util.build_data_parser_group()
parser_util.build_training_parser_group()
parser_util.build_generic_optimization_parser_group()
FLAGS, unknown_args = p.parse_known_args()
if len(unknown_args) > 0:
for bad_arg in unknown_args:
print("ERROR: Unknown command line arg: %s" % bad_arg)
raise ValueError("Invalid command line arg(s)")
return FLAGS