-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathmodels.py
354 lines (300 loc) · 13.8 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import re
import sys
import torch
from common.text.symbols import get_symbols, get_pad_idx
from common.utils import DefaultAttrDict, AttrDict
from fastpitch.model import FastPitch
from fastpitch.model_jit import FastPitchJIT
from hifigan.models import Generator
try:
from waveglow.model import WaveGlow
from waveglow import model as glow
from waveglow.denoiser import Denoiser
sys.modules['glow'] = glow
except ImportError:
print("WARNING: Couldn't import WaveGlow")
def parse_model_args(model_name, parser, add_help=False):
if model_name == 'FastPitch':
from fastpitch import arg_parser
return arg_parser.parse_fastpitch_args(parser, add_help)
elif model_name == 'HiFi-GAN':
from hifigan import arg_parser
return arg_parser.parse_hifigan_args(parser, add_help)
elif model_name == 'WaveGlow':
from waveglow.arg_parser import parse_waveglow_args
return parse_waveglow_args(parser, add_help)
else:
raise NotImplementedError(model_name)
def get_model(model_name, model_config, device, bn_uniform_init=False,
forward_is_infer=False, jitable=False):
"""Chooses a model based on name"""
del bn_uniform_init # unused (old name: uniform_initialize_bn_weight)
if model_name == 'FastPitch':
if jitable:
model = FastPitchJIT(**model_config)
else:
model = FastPitch(**model_config)
elif model_name == 'HiFi-GAN':
model = Generator(model_config)
elif model_name == 'WaveGlow':
model = WaveGlow(**model_config)
else:
raise NotImplementedError(model_name)
if forward_is_infer and hasattr(model, 'infer'):
model.forward = model.infer
return model.to(device)
def get_model_config(model_name, args, ckpt_config=None):
""" Get config needed to instantiate the model """
# Mark keys missing in `args` with an object (None is ambiguous)
_missing = object()
args = DefaultAttrDict(lambda: _missing, vars(args))
# `ckpt_config` is loaded from the checkpoint and has the priority
# `model_config` is based on args and fills empty slots in `ckpt_config`
if model_name == 'FastPitch':
model_config = dict(
# io
n_mel_channels=args.n_mel_channels,
# symbols
n_symbols=(len(get_symbols(args.symbol_set))
if args.symbol_set is not _missing else _missing),
padding_idx=(get_pad_idx(args.symbol_set)
if args.symbol_set is not _missing else _missing),
symbols_embedding_dim=args.symbols_embedding_dim,
# input FFT
in_fft_n_layers=args.in_fft_n_layers,
in_fft_n_heads=args.in_fft_n_heads,
in_fft_d_head=args.in_fft_d_head,
in_fft_conv1d_kernel_size=args.in_fft_conv1d_kernel_size,
in_fft_conv1d_filter_size=args.in_fft_conv1d_filter_size,
in_fft_output_size=args.in_fft_output_size,
p_in_fft_dropout=args.p_in_fft_dropout,
p_in_fft_dropatt=args.p_in_fft_dropatt,
p_in_fft_dropemb=args.p_in_fft_dropemb,
# output FFT
out_fft_n_layers=args.out_fft_n_layers,
out_fft_n_heads=args.out_fft_n_heads,
out_fft_d_head=args.out_fft_d_head,
out_fft_conv1d_kernel_size=args.out_fft_conv1d_kernel_size,
out_fft_conv1d_filter_size=args.out_fft_conv1d_filter_size,
out_fft_output_size=args.out_fft_output_size,
p_out_fft_dropout=args.p_out_fft_dropout,
p_out_fft_dropatt=args.p_out_fft_dropatt,
p_out_fft_dropemb=args.p_out_fft_dropemb,
# duration predictor
dur_predictor_kernel_size=args.dur_predictor_kernel_size,
dur_predictor_filter_size=args.dur_predictor_filter_size,
p_dur_predictor_dropout=args.p_dur_predictor_dropout,
dur_predictor_n_layers=args.dur_predictor_n_layers,
# pitch predictor
pitch_predictor_kernel_size=args.pitch_predictor_kernel_size,
pitch_predictor_filter_size=args.pitch_predictor_filter_size,
p_pitch_predictor_dropout=args.p_pitch_predictor_dropout,
pitch_predictor_n_layers=args.pitch_predictor_n_layers,
# pitch conditioning
pitch_embedding_kernel_size=args.pitch_embedding_kernel_size,
# speakers parameters
n_speakers=args.n_speakers,
speaker_emb_weight=args.speaker_emb_weight,
# energy predictor
energy_predictor_kernel_size=args.energy_predictor_kernel_size,
energy_predictor_filter_size=args.energy_predictor_filter_size,
p_energy_predictor_dropout=args.p_energy_predictor_dropout,
energy_predictor_n_layers=args.energy_predictor_n_layers,
# energy conditioning
energy_conditioning=args.energy_conditioning,
energy_embedding_kernel_size=args.energy_embedding_kernel_size,
)
elif model_name == 'HiFi-GAN':
if args.hifigan_config is not None:
assert ckpt_config is None, (
"Supplied --hifigan-config, but the checkpoint has a config. "
"Drop the flag or remove the config from the checkpoint file.")
print(f'HiFi-GAN: Reading model config from {args.hifigan_config}')
with open(args.hifigan_config) as f:
args = AttrDict(json.load(f))
model_config = dict(
# generator architecture
upsample_rates=args.upsample_rates,
upsample_kernel_sizes=args.upsample_kernel_sizes,
upsample_initial_channel=args.upsample_initial_channel,
resblock=args.resblock,
resblock_kernel_sizes=args.resblock_kernel_sizes,
resblock_dilation_sizes=args.resblock_dilation_sizes,
)
elif model_name == 'WaveGlow':
model_config = dict(
n_mel_channels=args.n_mel_channels,
n_flows=args.flows,
n_group=args.groups,
n_early_every=args.early_every,
n_early_size=args.early_size,
WN_config=dict(
n_layers=args.wn_layers,
kernel_size=args.wn_kernel_size,
n_channels=args.wn_channels
)
)
else:
raise NotImplementedError(model_name)
# Start with ckpt_config, and fill missing keys from model_config
final_config = {} if ckpt_config is None else ckpt_config.copy()
missing_keys = set(model_config.keys()) - set(final_config.keys())
final_config.update({k: model_config[k] for k in missing_keys})
# If there was a ckpt_config, it should have had all args
if ckpt_config is not None and len(missing_keys) > 0:
print(f'WARNING: Keys {missing_keys} missing from the loaded config; '
'using args instead.')
assert all(v is not _missing for v in final_config.values())
return final_config
def get_model_train_setup(model_name, args):
""" Dump train setup for documentation purposes """
if model_name == 'FastPitch':
return dict()
elif model_name == 'HiFi-GAN':
return dict(
# audio
segment_size=args.segment_size,
filter_length=args.filter_length,
num_mels=args.num_mels,
hop_length=args.hop_length,
win_length=args.win_length,
sampling_rate=args.sampling_rate,
mel_fmin=args.mel_fmin,
mel_fmax=args.mel_fmax,
mel_fmax_loss=args.mel_fmax_loss,
max_wav_value=args.max_wav_value,
# other
seed=args.seed,
# optimization
base_lr=args.learning_rate,
lr_decay=args.lr_decay,
epochs_all=args.epochs,
)
elif model_name == 'WaveGlow':
return dict()
else:
raise NotImplementedError(model_name)
def load_model_from_ckpt(checkpoint_data, model, key='state_dict'):
if key is None:
return checkpoint_data['model'], None
sd = checkpoint_data[key]
sd = {re.sub('^module\.', '', k): v for k, v in sd.items()}
status = model.load_state_dict(sd, strict=False)
return model, status
def load_and_setup_model(model_name, parser, checkpoint, amp, device,
unk_args=[], forward_is_infer=False, jitable=False):
if checkpoint is not None:
ckpt_data = torch.load(checkpoint)
print(f'{model_name}: Loading {checkpoint}...')
ckpt_config = ckpt_data.get('config')
if ckpt_config is None:
print(f'{model_name}: No model config in the checkpoint; using args.')
else:
print(f'{model_name}: Found model config saved in the checkpoint.')
else:
ckpt_config = None
ckpt_data = {}
model_parser = parse_model_args(model_name, parser, add_help=False)
model_args, model_unk_args = model_parser.parse_known_args()
unk_args[:] = list(set(unk_args) & set(model_unk_args))
model_config = get_model_config(model_name, model_args, ckpt_config)
model = get_model(model_name, model_config, device,
forward_is_infer=forward_is_infer,
jitable=jitable)
if checkpoint is not None:
key = 'generator' if model_name == 'HiFi-GAN' else 'state_dict'
model, status = load_model_from_ckpt(ckpt_data, model, key)
missing = [] if status is None else status.missing_keys
unexpected = [] if status is None else status.unexpected_keys
# Attention is only used during training, we won't miss it
if model_name == 'FastPitch':
missing = [k for k in missing if not k.startswith('attention.')]
unexpected = [k for k in unexpected if not k.startswith('attention.')]
assert len(missing) == 0 and len(unexpected) == 0, (
f'Mismatched keys when loading parameters. Missing: {missing}, '
f'unexpected: {unexpected}.')
if model_name == "WaveGlow":
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability
model = model.remove_weightnorm(model)
elif model_name == 'HiFi-GAN':
assert model_args.hifigan_config is not None or ckpt_config is not None, (
'Use a HiFi-GAN checkpoint from NVIDIA DeepLearningExamples with '
'saved config or supply --hifigan-config <json_file>.')
model.remove_weight_norm()
if amp:
model.half()
model.eval()
return model.to(device), model_config, ckpt_data.get('train_setup', {})
def load_and_setup_ts_model(model_name, checkpoint, amp, device=None):
print(f'{model_name}: Loading TorchScript checkpoint {checkpoint}...')
model = torch.jit.load(checkpoint).eval()
if device is not None:
model = model.to(device)
if amp:
model.half()
elif next(model.parameters()).dtype == torch.float16:
raise ValueError('Trying to load FP32 model,'
'TS checkpoint is in FP16 precision.')
return model
def convert_ts_to_trt(model_name, ts_model, parser, amp, unk_args=[]):
trt_parser = _parse_trt_compilation_args(model_name, parser, add_help=False)
trt_args, trt_unk_args = trt_parser.parse_known_args()
unk_args[:] = list(set(unk_args) & set(trt_unk_args))
if model_name == 'HiFi-GAN':
return _convert_ts_to_trt_hifigan(
ts_model, amp, trt_args.trt_min_opt_max_batch,
trt_args.trt_min_opt_max_hifigan_length)
else:
raise NotImplementedError
def _parse_trt_compilation_args(model_name, parent, add_help=False):
"""
Parse model and inference specific commandline arguments.
"""
parser = argparse.ArgumentParser(parents=[parent], add_help=add_help,
allow_abbrev=False)
trt = parser.add_argument_group(f'{model_name} Torch-TensorRT compilation parameters')
trt.add_argument('--trt-min-opt-max-batch', nargs=3, type=int,
default=(1, 8, 16),
help='Torch-TensorRT min, optimal and max batch size')
if model_name == 'HiFi-GAN':
trt.add_argument('--trt-min-opt-max-hifigan-length', nargs=3, type=int,
default=(100, 800, 1200),
help='Torch-TensorRT min, optimal and max audio length (in frames)')
return parser
def _convert_ts_to_trt_hifigan(ts_model, amp, trt_min_opt_max_batch,
trt_min_opt_max_hifigan_length, num_mels=80):
import torch_tensorrt
trt_dtype = torch.half if amp else torch.float
print(f'Torch TensorRT: compiling HiFi-GAN for dtype {trt_dtype}.')
min_shp, opt_shp, max_shp = zip(trt_min_opt_max_batch,
(num_mels,) * 3,
trt_min_opt_max_hifigan_length)
compile_settings = {
"inputs": [torch_tensorrt.Input(
min_shape=min_shp,
opt_shape=opt_shp,
max_shape=max_shp,
dtype=trt_dtype,
)],
"enabled_precisions": {trt_dtype},
"require_full_compilation": True,
}
trt_model = torch_tensorrt.compile(ts_model, **compile_settings)
print('Torch TensorRT: compilation successful.')
return trt_model