-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathprogram.py
469 lines (393 loc) · 16.7 KB
/
program.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# Copyright (c) 2022 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from profile import Profiler
import dllogger
import models
import numpy as np
from lr_scheduler import build_lr_scheduler
from optimizer import build_optimizer
from utils.misc import AverageMeter
from utils.mode import Mode, RunScope
from utils.utility import get_num_trainers
import paddle
import paddle.nn.functional as F
from paddle.distributed import fleet
from paddle.distributed.fleet import DistributedStrategy
from paddle.distributed.fleet.meta_optimizers.common import CollectiveHelper
from paddle.incubate import asp as sparsity
def create_feeds(image_shape):
"""
Create feeds mapping for the inputs of Pragrm execution.
Args:
image_shape(list[int]): Model input shape, such as [4, 224, 224].
Returns:
feeds(dict): A dict to map variables'name to their values.
key (string): Name of variable to feed.
Value (tuple): paddle.static.data.
"""
feeds = {}
feeds['data'] = paddle.static.data(
name="data", shape=[None] + image_shape, dtype="float32"
)
feeds['label'] = paddle.static.data(
name="label", shape=[None, 1], dtype="int64"
)
return feeds
def create_fetchs(out, feeds, class_num, label_smoothing=0, mode=Mode.TRAIN):
"""
Create fetchs to obtain specific outputs from Pragrm execution (included loss and measures).
Args:
out(variable): The model output variable.
feeds(dict): A dict of mapping variables'name to their values
(The input of Program execution).
class_num(int): The number of classes.
label_smoothing(float, optional): Epsilon of label smoothing. Default: 0.
mode(utils.Mode, optional): Train or eval mode. Default: Mode.TRAIN
Returns:
fetchs(dict): A dict of outputs from Program execution (included loss and measures).
key (string): Name of variable to fetch.
Value (tuple): (variable, AverageMeter).
"""
fetchs = {}
target = paddle.reshape(feeds['label'], [-1, 1])
if mode == Mode.TRAIN:
if label_smoothing == 0:
loss = F.cross_entropy(out, target)
else:
label_one_hot = F.one_hot(target, class_num)
soft_target = F.label_smooth(label_one_hot, epsilon=label_smoothing)
soft_target = paddle.reshape(soft_target, shape=[-1, class_num])
log_softmax = -F.log_softmax(out, axis=-1)
loss = paddle.sum(log_softmax * soft_target, axis=-1)
else:
loss = F.cross_entropy(out, target)
label = paddle.argmax(out, axis=-1, dtype='int32')
fetchs['label'] = (label, None)
loss = loss.mean()
fetchs['loss'] = (loss, AverageMeter('loss', '7.4f', need_avg=True))
acc_top1 = paddle.metric.accuracy(input=out, label=target, k=1)
acc_top5 = paddle.metric.accuracy(input=out, label=target, k=5)
metric_dict = {}
metric_dict["top1"] = acc_top1
metric_dict["top5"] = acc_top5
for key in metric_dict:
if mode != Mode.TRAIN and paddle.distributed.get_world_size() > 1:
paddle.distributed.all_reduce(
metric_dict[key], op=paddle.distributed.ReduceOp.SUM
)
metric_dict[key] = (
metric_dict[key] / paddle.distributed.get_world_size()
)
fetchs[key] = (
metric_dict[key],
AverageMeter(key, '7.4f', need_avg=True),
)
return fetchs
def create_strategy(args, is_train=True):
"""
Create paddle.static.BuildStrategy and paddle.static.ExecutionStrategy with arguments.
Args:
args(Namespace): Arguments obtained from ArgumentParser.
is_train(bool, optional): Indicate the prupose of strategy is for training
of not. Default is True.
Returns:
build_strategy(paddle.static.BuildStrategy): A instance of BuildStrategy.
exec_strategy(paddle.static.ExecutionStrategy): A instance of ExecutionStrategy.
"""
build_strategy = paddle.static.BuildStrategy()
exec_strategy = paddle.static.ExecutionStrategy()
exec_strategy.num_threads = 1
exec_strategy.num_iteration_per_drop_scope = (
10000 if args.amp and args.use_pure_fp16 else 10
)
paddle.set_flags(
{
'FLAGS_cudnn_exhaustive_search': True,
'FLAGS_conv_workspace_size_limit': 4096,
}
)
if not is_train:
build_strategy.fix_op_run_order = True
if args.amp:
build_strategy.fuse_bn_act_ops = True
build_strategy.fuse_elewise_add_act_ops = True
build_strategy.fuse_bn_add_act_ops = True
build_strategy.enable_addto = True
if args.fuse_resunit and is_train:
build_strategy.fuse_resunit = True
return build_strategy, exec_strategy
def dist_optimizer(args, optimizer):
"""
Create a distributed optimizer based on a given optimizer.
Args:
args(Namespace): Arguments obtained from ArgumentParser.
optimizer(paddle.optimizer): A normal optimizer.
Returns:
optimizer(fleet.distributed_optimizer): A distributed optimizer.
"""
build_strategy, exec_strategy = create_strategy(args)
dist_strategy = DistributedStrategy()
dist_strategy.execution_strategy = exec_strategy
dist_strategy.build_strategy = build_strategy
dist_strategy.fuse_all_reduce_ops = True
all_reduce_size = 16
dist_strategy.fuse_grad_size_in_MB = all_reduce_size
dist_strategy.nccl_comm_num = 1
dist_strategy.sync_nccl_allreduce = True
if args.amp:
dist_strategy.cudnn_batchnorm_spatial_persistent = True
dist_strategy.amp = True
dist_strategy.amp_configs = {
"init_loss_scaling": args.scale_loss,
"use_dynamic_loss_scaling": args.use_dynamic_loss_scaling,
"use_pure_fp16": args.use_pure_fp16,
}
dist_strategy.asp = args.asp
dist_strategy.qat = args.qat
optimizer = fleet.distributed_optimizer(optimizer, strategy=dist_strategy)
return optimizer
def build(args, main_prog, startup_prog, step_each_epoch, is_train=True):
"""
Build a executable paddle.static.Program via following four steps:
1. Create feeds.
2. Create a model.
3. Create fetchs.
4. Create an optimizer if is_train==True.
Args:
args(Namespace): Arguments obtained from ArgumentParser.
main_prog(paddle.static.Program):The main program.
startup_prog(paddle.static.Program):The startup program.
step_each_epoch(int): The number of steps in each epoch.
is_train(bool, optional): Whether the main programe created is for training. Default: True.
Returns:
fetchs(dict): A dict of outputs from Program execution (included loss and measures).
lr_scheduler(paddle.optimizer.lr.LRScheduler): A learning rate scheduler.
feeds(dict): A dict to map variables'name to their values.
optimizer(Optimizer): An optimizer with distributed/AMP/ASP strategy.
"""
with paddle.static.program_guard(main_prog, startup_prog):
with paddle.utils.unique_name.guard():
mode = Mode.TRAIN if is_train else Mode.EVAL
feeds = create_feeds(args.image_shape)
model_name = args.model_arch_name
class_num = args.num_of_class
input_image_channel = args.image_channel
data_format = args.data_layout
use_pure_fp16 = args.use_pure_fp16
bn_weight_decay = args.bn_weight_decay
model = models.__dict__[model_name](
class_num=class_num,
input_image_channel=input_image_channel,
data_format=data_format,
use_pure_fp16=use_pure_fp16,
bn_weight_decay=bn_weight_decay,
)
out = model(feeds["data"])
fetchs = create_fetchs(
out, feeds, class_num, args.label_smoothing, mode=mode
)
if args.asp:
sparsity.set_excluded_layers(main_program=main_prog, param_names=[model.fc.weight.name])
lr_scheduler = None
optimizer = None
if is_train:
lr_scheduler = build_lr_scheduler(args, step_each_epoch)
optimizer = build_optimizer(args, lr_scheduler)
optimizer = dist_optimizer(args, optimizer)
optimizer.minimize(fetchs['loss'][0], startup_prog)
# This is a workaround to "Communicator of ring id 0 has not been initialized.".
# Since Paddle's design, the initialization would be done inside train program,
# eval_only need to manually call initialization.
if (
args.run_scope == RunScope.EVAL_ONLY
and paddle.distributed.get_world_size() > 1
):
collective_helper = CollectiveHelper(
role_maker=fleet.PaddleCloudRoleMaker(is_collective=True)
)
collective_helper.update_startup_program(startup_prog)
return fetchs, lr_scheduler, feeds, optimizer
def compile_prog(args, program, loss_name=None, is_train=True):
"""
Compile the given program, which would fuse computing ops or optimize memory footprint
based building strategy in config.
Args:
args(Namespace): Arguments obtained from ArgumentParser.
program(paddle.static.Program): The main program to be compiled.
loss_name(str, optional): The name of loss variable. Default: None.
is_train(bool, optional): Indicate the prupose of strategy is for
training of not. Default is True.
Returns:
compiled_program(paddle.static.CompiledProgram): A compiled program.
"""
build_strategy, exec_strategy = create_strategy(args, is_train)
compiled_program = paddle.static.CompiledProgram(
program, build_strategy=build_strategy
)
return compiled_program
def run(
args,
dataloader,
exe,
program,
fetchs,
epoch,
mode=Mode.TRAIN,
lr_scheduler=None,
):
"""
Execute program.
Args:
args(Namespace): Arguments obtained from ArgumentParser.
dataloader(nvidia.dali.plugin.paddle.DALIGenericIterator):
Iteratable output of NVIDIA DALI pipeline,
please refer to dali_dataloader in dali.py for details.
exe(paddle.static.Executor): A executor to run program.
program(paddle.static.Program): The program to be executed.
fetchs(dict): A dict of outputs from Program execution (included loss and measures).
epoch(int): Current epoch id to run.
mode(utils.Mode, optional): Train or eval mode. Default: Mode.TRAIN.
lr_scheduler(paddle.optimizer.lr.LRScheduler, optional): A learning rate scheduler.
Default: None.
Returns:
metrics (dict): A dictionary to collect values of metrics.
"""
num_trainers = get_num_trainers()
fetch_list = [f[0] for f in fetchs.values()]
metric_dict = {"lr": AverageMeter('lr', 'f', postfix=",", need_avg=False)}
for k in fetchs:
if fetchs[k][1] is not None:
metric_dict[k] = fetchs[k][1]
metric_dict["batch_time"] = AverageMeter('batch_time', '.5f', postfix=" s,")
metric_dict["data_time"] = AverageMeter('data_time', '.5f', postfix=" s,")
metric_dict["compute_time"] = AverageMeter(
'compute_time', '.5f', postfix=" s,"
)
for m in metric_dict.values():
m.reset()
profiler = Profiler()
tic = time.perf_counter()
idx = 0
batch_size = None
latency = []
total_benchmark_steps = args.benchmark_steps + args.benchmark_warmup_steps
dataloader.reset()
while True:
# profiler.profile_setup return True only when
# profile is enable and idx == stop steps
if profiler.profile_setup(idx):
break
idx += 1
try:
batch = next(dataloader)
except StopIteration:
# Reset dataloader when run benchmark to fill required steps.
if args.benchmark and (idx < total_benchmark_steps):
dataloader.reset()
# Reset tic timestamp to ignore exception handling time.
tic = time.perf_counter()
continue
break
except RuntimeError:
logging.warning(
"Except RuntimeError when reading data from dataloader, try to read once again..."
)
continue
reader_toc = time.perf_counter()
metric_dict['data_time'].update(reader_toc - tic)
batch_size = batch[0]["data"].shape()[0]
feed_dict = batch[0]
with profiler.profile_tag(
idx, "Training" if mode == Mode.TRAIN else "Evaluation"
):
results = exe.run(
program=program, feed=feed_dict, fetch_list=fetch_list
)
for name, m in zip(fetchs.keys(), results):
if name in metric_dict:
metric_dict[name].update(np.mean(m), batch_size)
metric_dict["compute_time"].update(time.perf_counter() - reader_toc)
metric_dict["batch_time"].update(time.perf_counter() - tic)
if mode == Mode.TRAIN:
metric_dict['lr'].update(lr_scheduler.get_lr())
if lr_scheduler is not None:
with profiler.profile_tag(idx, "LR Step"):
lr_scheduler.step()
tic = time.perf_counter()
if idx % args.print_interval == 0:
log_msg = {}
log_msg['loss'] = metric_dict['loss'].val.item()
log_msg['top1'] = metric_dict['top1'].val.item()
log_msg['top5'] = metric_dict['top5'].val.item()
log_msg['data_time'] = metric_dict['data_time'].val
log_msg['compute_time'] = metric_dict['compute_time'].val
log_msg['batch_time'] = metric_dict['batch_time'].val
log_msg['ips'] = (
batch_size * num_trainers / metric_dict['batch_time'].val
)
if mode == Mode.TRAIN:
log_msg['lr'] = metric_dict['lr'].val
log_info((epoch, idx), log_msg, mode)
if args.benchmark:
latency.append(metric_dict['batch_time'].val)
# Ignore the warmup iters
if idx == args.benchmark_warmup_steps:
metric_dict["compute_time"].reset()
metric_dict["data_time"].reset()
metric_dict["batch_time"].reset()
latency.clear()
logging.info("Begin benchmark at step %d", idx + 1)
if idx == total_benchmark_steps:
benchmark_data = {}
benchmark_data['ips'] = (
batch_size * num_trainers / metric_dict['batch_time'].avg
)
if mode == mode.EVAL:
latency = np.array(latency) * 1000
quantile = np.quantile(latency, [0.9, 0.95, 0.99])
benchmark_data['latency_avg'] = np.mean(latency)
benchmark_data['latency_p90'] = quantile[0]
benchmark_data['latency_p95'] = quantile[1]
benchmark_data['latency_p99'] = quantile[2]
logging.info("End benchmark at epoch step %d", idx)
return benchmark_data
epoch_data = {}
epoch_data['loss'] = metric_dict['loss'].avg.item()
epoch_data['epoch_time'] = metric_dict['batch_time'].total
epoch_data['ips'] = (
batch_size
* num_trainers
* metric_dict["batch_time"].count
/ metric_dict["batch_time"].sum
)
if mode == Mode.EVAL:
epoch_data['top1'] = metric_dict['top1'].avg.item()
epoch_data['top5'] = metric_dict['top5'].avg.item()
log_info((epoch,), epoch_data, mode)
return epoch_data
def log_info(step, metrics, mode):
"""
Log metrics with step and mode information.
Args:
step(tuple): Step, coulbe (epoch-id, iter-id). Use tuple() for summary.
metrics(dict): A dictionary collected values of metrics.
mode(utils.Mode): Train or eval mode.
"""
prefix = 'train' if mode == Mode.TRAIN else 'val'
dllogger_iter_data = {}
for key in metrics:
dllogger_iter_data[f"{prefix}.{key}"] = metrics[key]
dllogger.log(step=step, data=dllogger_iter_data)