-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathlr_scheduler.py
77 lines (69 loc) · 2.95 KB
/
lr_scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Copyright (c) 2022 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import logging
import paddle
class Cosine:
"""
Cosine learning rate decay.
lr = eta_min + 0.5 * (learning_rate - eta_min) * (cos(epoch * (PI / epochs)) + 1)
Args:
args(Namespace): Arguments obtained from ArgumentParser.
step_each_epoch(int): The number of steps in each epoch.
last_epoch (int, optional): The index of last epoch. Can be set to restart training.
Default: -1, meaning initial learning rate.
"""
def __init__(self, args, step_each_epoch, last_epoch=-1):
super().__init__()
if args.warmup_epochs >= args.epochs:
args.warmup_epochs = args.epochs
self.learning_rate = args.lr
self.T_max = (args.epochs - args.warmup_epochs) * step_each_epoch
self.eta_min = 0.0
self.last_epoch = last_epoch
self.warmup_steps = round(args.warmup_epochs * step_each_epoch)
self.warmup_start_lr = args.warmup_start_lr
def __call__(self):
learning_rate = paddle.optimizer.lr.CosineAnnealingDecay(
learning_rate=self.learning_rate,
T_max=self.T_max,
eta_min=self.eta_min,
last_epoch=self.
last_epoch) if self.T_max > 0 else self.learning_rate
if self.warmup_steps > 0:
learning_rate = paddle.optimizer.lr.LinearWarmup(
learning_rate=learning_rate,
warmup_steps=self.warmup_steps,
start_lr=self.warmup_start_lr,
end_lr=self.learning_rate,
last_epoch=self.last_epoch)
return learning_rate
def build_lr_scheduler(args, step_each_epoch):
"""
Build a learning rate scheduler.
Args:
args(Namespace): Arguments obtained from ArgumentParser.
step_each_epoch(int): The number of steps in each epoch.
return:
lr(paddle.optimizer.lr.LRScheduler): A learning rate scheduler.
"""
# Turn last_epoch to last_step, since we update lr each step instead of each epoch.
last_step = args.start_epoch * step_each_epoch - 1
learning_rate_mod = sys.modules[__name__]
lr = getattr(learning_rate_mod, args.lr_scheduler)(args, step_each_epoch,
last_step)
if not isinstance(lr, paddle.optimizer.lr.LRScheduler):
lr = lr()
logging.info("build lr %s success..", lr)
return lr