|
| 1 | +// Source : https://leetcode.com/problems/perfect-squares/ |
| 2 | +// Author : Hao Chen |
| 3 | +// Date : 2015-10-25 |
| 4 | + |
| 5 | +/*************************************************************************************** |
| 6 | + * |
| 7 | + * Given a positive integer n, find the least number of perfect square numbers (for |
| 8 | + * example, 1, 4, 9, 16, ...) which sum to n. |
| 9 | + * |
| 10 | + * For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 |
| 11 | + * because 13 = 4 + 9. |
| 12 | + * |
| 13 | + * Credits:Special thanks to @jianchao.li.fighter for adding this problem and creating |
| 14 | + * all test cases. |
| 15 | + * |
| 16 | + ***************************************************************************************/ |
| 17 | + |
| 18 | + |
| 19 | +class Solution { |
| 20 | +public: |
| 21 | + |
| 22 | + int numSquares(int n) { |
| 23 | + return numSquares_dp_opt(n); //12ms |
| 24 | + return numSquares_dp(n); //232ms |
| 25 | + } |
| 26 | + |
| 27 | + /* |
| 28 | + * Dynamic Programming |
| 29 | + * =================== |
| 30 | + * dp[0] = 0 |
| 31 | + * dp[1] = dp[0]+1 = 1 |
| 32 | + * dp[2] = dp[1]+1 = 2 |
| 33 | + * dp[3] = dp[2]+1 = 3 |
| 34 | + * dp[4] = min{ dp[4-1*1]+1, dp[4-2*2]+1 } |
| 35 | + * = min{ dp[3]+1, dp[0]+1 } |
| 36 | + * = 1 |
| 37 | + * dp[5] = min{ dp[5-1*1]+1, dp[5-2*2]+1 } |
| 38 | + * = min{ dp[4]+1, dp[1]+1 } |
| 39 | + * = 2 |
| 40 | + * dp[6] = min{ dp[6-1*1]+1, dp[6-2*2]+1 } |
| 41 | + * = min{ dp[5]+1, dp[2]+1 } |
| 42 | + * = 3 |
| 43 | + * dp[7] = min{ dp[7-1*1]+1, dp[7-2*2]+1 } |
| 44 | + * = min{ dp[6]+1, dp[3]+1 } |
| 45 | + * = 4 |
| 46 | + * dp[8] = min{ dp[8-1*1]+1, dp[8-2*2]+1 } |
| 47 | + * = min{ dp[7]+1, dp[4]+1 } |
| 48 | + * = 2 |
| 49 | + * dp[9] = min{ dp[9-1*1]+1, dp[9-2*2]+1, dp[9-3*3] } |
| 50 | + * = min{ dp[8]+1, dp[5]+1, dp[0]+1 } |
| 51 | + * = 1 |
| 52 | + * dp[10] = min{ dp[10-1*1]+1, dp[10-2*2]+1, dp[10-3*3] } |
| 53 | + * = min{ dp[9]+1, dp[6]+1, dp[1]+1 } |
| 54 | + * = 2 |
| 55 | + * .... |
| 56 | + * |
| 57 | + * So, the dynamic programm formula is |
| 58 | + * |
| 59 | + * dp[n] = min{ dp[n - i*i] + 1 }, n - i*i >=0 && i >= 1 |
| 60 | + * |
| 61 | + */ |
| 62 | + int numSquares_dp(int n) { |
| 63 | + if ( n <=0 ) return 0; |
| 64 | + |
| 65 | + int *dp = new int[n+1]; |
| 66 | + dp[0] = 0; |
| 67 | + |
| 68 | + for (int i=1; i<=n; i++ ) { |
| 69 | + int m = n; |
| 70 | + for (int j=1; i-j*j >= 0; j++) { |
| 71 | + m = min (m, dp[i-j*j] + 1); |
| 72 | + } |
| 73 | + dp[i] = m; |
| 74 | + } |
| 75 | + |
| 76 | + return dp[n]; |
| 77 | + delete [] dp; |
| 78 | + } |
| 79 | + |
| 80 | + //using cache to optimize the dp algorithm |
| 81 | + int numSquares_dp_opt(int n) { |
| 82 | + if ( n <=0 ) return 0; |
| 83 | + |
| 84 | + static vector<int> dp(1, 0); |
| 85 | + if (dp.size() >= (n+1) ) return dp[n]; |
| 86 | + |
| 87 | + for (int i=dp.size(); i<=n; i++ ) { |
| 88 | + int m = n; |
| 89 | + for (int j=1; i-j*j >= 0; j++) { |
| 90 | + m = min (m, dp[i-j*j] + 1); |
| 91 | + } |
| 92 | + dp.push_back(m); |
| 93 | + } |
| 94 | + |
| 95 | + return dp[n]; |
| 96 | + } |
| 97 | +}; |
| 98 | + |
0 commit comments