-
Notifications
You must be signed in to change notification settings - Fork 488
/
Copy pathmodel_bin.py
145 lines (124 loc) · 5.2 KB
/
model_bin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/FunAudioLLM/SenseVoice). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import os.path
from pathlib import Path
from typing import List, Union, Tuple
import torch
import librosa
import numpy as np
from utils.infer_utils import (
CharTokenizer,
Hypothesis,
ONNXRuntimeError,
OrtInferSession,
TokenIDConverter,
get_logger,
read_yaml,
)
from utils.frontend import WavFrontend
from utils.infer_utils import pad_list
logging = get_logger()
class SenseVoiceSmallONNX:
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
https://arxiv.org/abs/2206.08317
"""
def __init__(
self,
model_dir: Union[str, Path] = None,
batch_size: int = 1,
device_id: Union[str, int] = "-1",
plot_timestamp_to: str = "",
quantize: bool = False,
intra_op_num_threads: int = 4,
cache_dir: str = None,
**kwargs,
):
if quantize:
model_file = os.path.join(model_dir, "model_quant.onnx")
else:
model_file = os.path.join(model_dir, "model.onnx")
config_file = os.path.join(model_dir, "config.yaml")
cmvn_file = os.path.join(model_dir, "am.mvn")
config = read_yaml(config_file)
# token_list = os.path.join(model_dir, "tokens.json")
# with open(token_list, "r", encoding="utf-8") as f:
# token_list = json.load(f)
# self.converter = TokenIDConverter(token_list)
self.tokenizer = CharTokenizer()
config["frontend_conf"]['cmvn_file'] = cmvn_file
self.frontend = WavFrontend(**config["frontend_conf"])
self.ort_infer = OrtInferSession(
model_file, device_id, intra_op_num_threads=intra_op_num_threads
)
self.batch_size = batch_size
self.blank_id = 0
def __call__(self,
wav_content: Union[str, np.ndarray, List[str]],
language: List,
textnorm: List,
tokenizer=None,
**kwargs) -> List:
waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq)
waveform_nums = len(waveform_list)
asr_res = []
for beg_idx in range(0, waveform_nums, self.batch_size):
end_idx = min(waveform_nums, beg_idx + self.batch_size)
feats, feats_len = self.extract_feat(waveform_list[beg_idx:end_idx])
ctc_logits, encoder_out_lens = self.infer(feats,
feats_len,
np.array(language, dtype=np.int32),
np.array(textnorm, dtype=np.int32)
)
# back to torch.Tensor
ctc_logits = torch.from_numpy(ctc_logits).float()
# support batch_size=1 only currently
x = ctc_logits[0, : encoder_out_lens[0].item(), :]
yseq = x.argmax(dim=-1)
yseq = torch.unique_consecutive(yseq, dim=-1)
mask = yseq != self.blank_id
token_int = yseq[mask].tolist()
if tokenizer is not None:
asr_res.append(tokenizer.tokens2text(token_int))
else:
asr_res.append(token_int)
return asr_res
def load_data(self, wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List:
def load_wav(path: str) -> np.ndarray:
waveform, _ = librosa.load(path, sr=fs)
return waveform
if isinstance(wav_content, np.ndarray):
return [wav_content]
if isinstance(wav_content, str):
return [load_wav(wav_content)]
if isinstance(wav_content, list):
return [load_wav(path) for path in wav_content]
raise TypeError(f"The type of {wav_content} is not in [str, np.ndarray, list]")
def extract_feat(self, waveform_list: List[np.ndarray]) -> Tuple[np.ndarray, np.ndarray]:
feats, feats_len = [], []
for waveform in waveform_list:
speech, _ = self.frontend.fbank(waveform)
feat, feat_len = self.frontend.lfr_cmvn(speech)
feats.append(feat)
feats_len.append(feat_len)
feats = self.pad_feats(feats, np.max(feats_len))
feats_len = np.array(feats_len).astype(np.int32)
return feats, feats_len
@staticmethod
def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray:
def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray:
pad_width = ((0, max_feat_len - cur_len), (0, 0))
return np.pad(feat, pad_width, "constant", constant_values=0)
feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats]
feats = np.array(feat_res).astype(np.float32)
return feats
def infer(self,
feats: np.ndarray,
feats_len: np.ndarray,
language: np.ndarray,
textnorm: np.ndarray,) -> Tuple[np.ndarray, np.ndarray]:
outputs = self.ort_infer([feats, feats_len, language, textnorm])
return outputs