forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_509.java
89 lines (85 loc) · 1.71 KB
/
_509.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
package com.fishercoder.solutions;
import java.util.ArrayList;
import java.util.List;
/**
* 509. Fibonacci Number
*
* The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence,
* such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,
*
* F(0) = 0, F(1) = 1
* F(N) = F(N - 1) + F(N - 2), for N > 1.
* Given N, calculate F(N).
*
* Example 1:
* Input: 2
* Output: 1
* Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
*
* Example 2:
* Input: 3
* Output: 2
* Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
*
* Example 3:
* Input: 4
* Output: 3
* Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
*
* Note:
* 0 ≤ N ≤ 30.
*/
public class _509 {
public static class Solution1 {
/**
* Time: O(n)
* Space: O(n)
*/
public int fib(int N) {
List<Integer> list = new ArrayList<>();
list.add(0);
list.add(1);
for (int i = 2; i <= N; i++) {
list.add(list.get(i - 1) + list.get(i - 2));
}
return list.get(N);
}
}
public static class Solution2 {
/**
* Time: O(n)
* Space: O(n)
*/
public int fib(int N) {
if (N < 2) {
return N;
}
int[] fibNums = new int[N + 1];
fibNums[0] = 0;
fibNums[1] = 1;
for (int i = 2; i <= N; i++) {
fibNums[i] = fibNums[i - 1] + fibNums[i - 2];
}
return fibNums[N];
}
}
public static class Solution3 {
/**
* Time: O(n)
* Space: O(1)
*/
public int fib(int N) {
if (N < 2) {
return N;
}
int a = 0;
int b = 1;
while (N-- > 1) {
int sum = a + b;
a = b;
b = sum;
}
return b;
}
}
}